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The famous ratio test of d’Alembert for convergence of series depends on the limit of
the simple ratio an+1

an
(J. d’Alembert, 1717–1783). If the limit is 1, the test fails. Most

notable is its failure in situations where it is expected to succeed. For example, it often
fails on series with terms containing factorials or finite products. Such terms appear in
Taylor series of many functions.

The frequent failure of the ratio test motivated many mathematicians to analyze the
ratio an+1

an
when its limit is 1. Of course, if the limit of an+1

an
is 1, then an+1

an
= 1 + bn for

some sequence bn that converges to 0. A close look at bn leads to several sharper tests
than the ratio test, such as Kummer’s, Raabe’s, and Gauss’s tests.

For example, the test which is due to J. L. Raabe (1801–1859) covers some se-
ries with factorial terms where the ratio test fails. Some series which are not covered
by Raabe’s test can be tested with the sharper test of C. F. Gauss (1777–1855). In
fact, Gauss’s test was devised to test the hypergeometric series with unit argument
F(α, β; γ ; 1); here

F(α, β; γ ; x) =
∞∑

n=0

α(α + 1)(α + 2) · · · (α + n − 1)β(β + 1)(β + 2) · · · (β + n − 1)

n! γ (γ + 1)(γ + 2) · · · (γ + n − 1)
xn .

In this paper we will give new ratio tests for convergence of series together with
several examples of series where these new ratio tests succeed but the ordinary ratio
test fails. We will prove that convergence by the ratio test implies convergence by these
new tests.

Our main convergence test, the second ratio test, is stated in Theorem 1. The test
depends on the two ratios a2n

an
and a2n+1

an
. The simple nature of these ratios makes this

test a simple convergence test.
The examples given in this paper will show that this test applies to a wide range of

series, including series that appear to require Raabe’s or Gauss’s test. Covering cases
that require delicate tests like Raabe’s or Gauss’s test is one of the strengths of this
test. A second strength is its success, with few calculations, in testing series given in a
typical calculus book or an advanced calculus book.

To further show the wide range of applications of these new convergence tests,
we will use the second ratio test to give a new proof of Raabe’s test. Then, we will
conclude this paper with a new ratio comparison test that uses these new ratios.

For convenience, we list the tests of Kummer, Raabe, and Gauss [2].

Theorem (Kummer’s Test). If an > 0, dn > 0,
∑∞

n=1 dn diverges, and

lim
n→∞

(
1
dn

− an+1

an
· 1

dn+1

)
= h,

then
∑∞

n=1 an converges if h > 0 and diverges if h < 0.
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Theorem (Raabe’s Test). If an > 0, εn → 0, and

an+1

an
= 1 − β

n
+ εn

n
,

where β is independent of n, then
∑∞

n=1 an converges if β > 1 and diverges if β < 1.

Theorem (Gauss’s Test). If an > 0, θn is bounded, and an+1
an

= 1 − β

n + θn
n1+λ , λ > 0,

where β is independent of n, then
∑∞

n=1 an converges if β > 1 and diverges if β ≤ 1.

Our main result, the second ratio test, is given in the following Theorem.

Theorem 1 (The Second Ratio Test). Let
∑∞

n=1 an be a positive-term series. Let

L = max
{

lim sup
n→∞

a2n

an
, lim sup

n→∞

a2n+1

an

}

and

l = min
{

lim inf
n→∞

a2n

an
, lim inf

n→∞
a2n+1

an

}
.

(i) If L < 1
2 , then

∑∞
n=1 an converges.

(ii) If l > 1
2 , then

∑∞
n=1 diverges.

(iii) If l ≤ 1
2 ≤ L, then the test is inconclusive.

Proof.

(i) Suppose L < 1
2 . Let r be such that L < r < 1

2 . Then there is an integer N such
that

a2n

an
≤ r and

a2n+1

an
≤ r

for all n ≥ N . Now,

∞∑

n=N

an = (aN + aN+1 + · · · + a2N−1) + (a2N + a2N+1 + · · · + a4N−1)

+ (a4N + a4N+1 + · · · + a8N−1) + · · ·
+ (a2k N + a2k N+1 + · · · + a2k+1 N−1) + · · ·

=
∞∑

k=0

(a2k N + a2k N+1 + · · · + a2k+1 N−1).

Let Sk = a2k N + a2k N+1 + · · · + a2k+1 N−1 for k = 0, 1, 2, 3, . . . . Then, for k ≥ 1,

Sk = (a2k N + a2k N+1) + (a2k N+2 + a2k N+3) + · · · + (a2k+1 N−2 + a2k+1 N−1).
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Since a2n
an

≤ r and a2n+1
an

≤ r ,

Sk = (a2k N + a2k N+1) + (a2k N+2 + a2k N+3) + · · · + (a2k+1 N−2 + a2k+1 N−1)

≤ 2(a2k−1 N )r + 2(a2k−1 N+1)r + · · · + 2(a2k N−1)r

= 2r(a2k−1 N + a2k−1 N+1 + · · · + a2k N−1) = 2r Sk−1.

So, by induction on k we can show that

Sk ≤ 2kr k(aN + aN+1 + · · · + a2N−1) = 2kr k S0

for k ≥ 1. Thus,

∞∑

n=N

an =
∞∑

k=0

Sk ≤
∞∑

k=0

S0(2r)k < ∞

since r < 1
2 . Therefore,

∑∞
n=∞ an converges if L < 1

2 .

(ii) Suppose l > 1
2 . Let r be such that 1

2 < r < l. Then there is an integer N such
that

a2n

an
> r and

a2n+1

an
> r

for all n ≥ N . Thus, a2n > ran and a2n+1 > ran for all n ≥ N . Let Sk be as above. It
can be shown by induction that Sk ≥ S0(2r)k for k ≥ 1. Therefore, since r > 1

2 , we
have

∞∑

n=N

an =
∞∑

k=0

Sk ≥
∞∑

k=0

S0(2r)k = ∞.

Thus,
∑∞

n=∞ an diverges if l > 1
2 .

(iii) The series
∑∞

n=1 an where an = 1
n(ln n)p converges if p > 1 and diverges if p ≤

1. But

lim
n→∞

a2n

an
= lim

n→∞
n(ln n)p

2n[ln(2n)]p
= 1

2
.

This completes the proof.

In many examples limn→∞
a2n
an

and limn→∞
a2n+1

an
exist, and in this case the second

ratio test takes a simpler form. Using the notation of Theorem 1, if L1 = limn→∞
a2n
an

and L2 = limn→∞
a2n+1

an
, then

lim sup
n→∞

a2n

an
= lim inf

n→∞
a2n

an
= L1, lim sup

n→∞

a2n+1

an
= lim inf

n→∞
a2n+1

an
= L2.

Thus, we have the following corollary.

Corollary 1. Let
∑∞

n=1 an be a positive-term series. Suppose

lim
n→∞

a2n

an
and lim

n→∞
a2n+1

an
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exist. Let L1 = limn→∞
a2n
an

, L2 = limn→∞
a2n+1

an
, L = max{L1, L2}, and l =

min{L1, L2}.
(i) If L < 1

2 , then
∑∞

n=1 an converges.

(ii) If l > 1
2 , then

∑∞
n=1 an diverges.

(iii) If l ≤ 1
2 ≤ L, then the test is inconclusive.

In Corollary 1, if we further assume that {an} is a decreasing sequence, then L =
limn→∞

a2n
an

and l = limn→∞
a2n+1

an
, and therefore we have the following corollary.

Corollary 2. If {an} is a positive decreasing sequence, then
∑∞

n=1 an converges if
limn→∞

a2n
an

< 1
2 and diverges if limn→∞

a2n+1
an

> 1
2 .

We would like to point out that Corollary 2 is related to Cauchy’s Theorem from
which it can be proved.

Theorem (Cauchy). If {an} is decreasing and limn→∞ an = 0, then both
∑∞

n=0 an and∑∞
k=0 2na2n converge or both diverge.

To see that Corollary 2 follows from Cauchy’s Theorem, notice that

l = lim
n→∞

a2n+1

an
≤ lim

n→∞
a2n

an
= L .

(i) If L < 1
2 , then, using the ordinary ratio test on

∑∞
k=0 2na2n , we obtain

lim
n→∞

2n+1a2n+1

2na2n
= 2 lim

n→∞
a2(2n)

a2n
= 2L < 1.

Therefore,
∑∞

n=0 2na2n converges. Thus,
∑∞

n=0 an converges.

(ii) If l > 1
2 , then

lim
n→∞

2n+1a2n+1

2na2n
= 2 lim

n→∞
a2(2n )

a2n
≥ 2l > 1.

Therefore,
∑∞

n=0 2na2n diverges. Thus,
∑∞

n=0 an diverges.

Cauchy’s Theorem requires that the sequence {an} be a decreasing sequence. This
is a strong assumption on the sequence. It leads, as you can see from the above proof,
to a stronger version of Corollary 2, namely: if {an} is a decreasing sequence, then∑∞

n=1 an converges if limn→∞
a2n
an

< 1
2 and diverges if limn→∞

a2n
an

> 1
2 .

Now we turn to the issue of the strength of these tests. To understand the strength
of these tests and their connection to the ordinary ratio test, we need to look at the two
relations

a2n

an
= an+1

an
· an+2

an+1
· · · a2n

a2n−1

and

a2n+1

an
= an+1

an
· an+2

an+1
· · · a2n+1

a2n
.
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From these relations it is easy to see that convergence by the ordinary ratio test implies
limn→∞

a2n
an

= limn→∞
a2n+1

an
= 0, and therefore implies convergence by the second ra-

tio tests. Also, divergence by the ratio test implies limn→∞
a2n
an

= limn→∞
a2n+1

an
= ∞,

and therefore implies divergence by the second ratio test.
To make a clear distinction between these new tests and the ordinary ratio test, we

give several examples of series on which the ordinary ratio test fails, but the second
ratio test succeeds. For convenience, we list below two limit formulas that are used
several times in the calculations of these examples:

lim
n→∞

[
tn + α

tn

]n−a

= eα/t

and

lim
n→∞

[
tn + β

tn + γ

]n−a

= e(β−γ )/t .

They can be obtained directly or from the well-known limit formula

lim
n→∞

[
1 + α

n

]n
= eα.

Example 1 (The p-series). Let an = 1
n p . Then a2n

an
= 1

2p and a2n+1
an

= 1
(2+ 1

n )p . There-

fore, limn→∞
a2n+1

an
= limn→∞

a2n
an

= 1
2p . Since 1

2p < 1
2 if p > 1 and 1

2p > 1
2 if p < 1,

this proves the well-known fact that the series
∑∞

n=0
1

n p converges if p > 1 and di-
verges if p < 1.

Example 2. Let an = 1·3·5···(2n−1)
2n(n+1)! . Then

a2n+1

an
<

a2n

an
= (2n + 1)(2n + 3) · · · (4n − 1)

2n(n + 2)(n + 3) · · · (2n)(2n + 1)
= (2n + 3)(2n + 5) · · · (4n − 1)

2n(n + 2)(n + 3) · · · (2n)

= 1
2

(
2n + 3
2n + 4

)(
2n + 5
2n + 6

)
· · ·

(
4n − 1

4n

)

<
1
2

(
4n − 1

4n

)n−1

= 1
2

(
1 − 1

4n

)n−1

.

Since limn→∞
(
1 − 1

4n

)n−1 = 1
4√e

,

lim sup
n→∞

a2n+1

an
≤ lim sup

n→∞

a2n

an
≤ 1

2 4
√

e
<

1
2
.

Therefore, the series
∑∞

n=0
1·3·5···(2n−1)

2n(n+1)! converges.

Example 3. Let x > 0 and let an = (n−1)!
(1+x)(2+x)(3+x)···(n+x)

. Then

a2n+1

an
≤ a2n

an
= (n)(n + 1)(n + 2) · · · (2n − 1)

(n + 1 + x)(n + 2 + x) · · · (2n − 1 + x)(2n + x)
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= n
2n + x

(
n + 1

n + 1 + x

) (
n + 2

n + 2 + x

)
· · ·

(
2n − 1

2n − 1 + x

)

≤ n
2n + x

(
2n − 1

2n − 1 + x

)n−1

= n
2n + x

(
1 − x

2n − 1 + x

)n−1

.

It is easy to see that

lim
n→∞

n
2n + x

(
1 − x

2n − 1 + x

)n−1

= 1
2

e−x/2.

Thus,

lim sup
n→∞

a2n+1

an
≤ lim sup

n→∞

a2n

an
≤ 1

2
e−x/2 <

1
2
.

Therefore, the series

∞∑

n=1

(n − 1)!
(1 + x)(2 + x)(3 + x) · · · (n + x)

converges for x > 0.

Example 4. Let x > 0 and let an = 1·2p ·3p ···(n−1)p

(1+x)(2p+x)(3p+x)···(n p+x)
. Then

a2n+1

an
≤ a2n

an
= (n p)(n + 1)p(n + 2)p · · · (2n − 1)p

((n + 1)p + x)((n + 2)p + x) · · · ((2n − 1)p + x)((2n)p + x)

≤ n p

(2n)p + x
.

Therefore,

lim sup
n→∞

a2n+1

an
≤ lim sup

n→∞

a2n

an
≤ 1

2p
<

1
2

for p > 1.

Also, it is easy to see that

a2n+1

an
≤ a2n

an
= (n p)(n + 1)p(n + 2)p · · · (2n − 1)p

((n + 1)p + x)((n + 2)p + x) · · · ((2n − 1)p + x)((2n)p + x)

≤
(

n p

(2n)p + x

)(
1 − x

(2n − 1)p + x

)n−1

.

Thus, if p < 1 then

lim sup
n→∞

a2n+1

an
≤ lim sup

n→∞

a2n

an
≤ lim

n→∞

(
n p

(2n)p + x

)(
1 − x

(2n − 1)p + x

)n−1

= 0.

Therefore, if x > 0, the series
∑∞

n=1
1·2p ·3p ···(n−1)p

(1+x)(2p+x)(3p+x)···(n p+x)
converges for all p < 1 or

p > 1. From this example and Example 3 the series converges for all x > 0 and all p.
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Examples 3 and 4 are both special cases of problem E3416, which appeared in the
MONTHLY problems and solutions section [3].

Example 5. Let an =
[ 1·3·5···(2n−1)

2n n!
]p

. Then

a2n+1

an
<

a2n

an
=

[
(2n + 1)(2n + 3)(2n + 5) · · · (4n − 1)

2n(n + 1)(n + 2) · · · (2n)

]p

=
[(

1 − 1
2n + 1

)(
1 − 1

2n + 4

)
· · ·

(
1 − 1

4n

)]p

.

Now, since 1 − x ≤ e−x for 0 < x < 1,

a2n+1

an
<

a2n

an
≤ e−p

(
1

2n+2 + 1
2n+4 +···+ 1

4n

)

.

But

1
n + 1

+ 1
n + 2

+ · · · + 1
2n

> ln
[

2n + 1
n + 1

]
,

so

a2n+1

an
<

a2n

an
≤ e− p

2 ln
[

2n+1
n+1

]

=
[

2n + 1
n + 1

]−p/2

.

Thus,

lim sup
n→∞

a2n+1

an
≤ lim sup

n→∞

a2n

an
≤ lim

n→∞

[
2n + 1
n + 1

]−p/2

= 2−p/2 <
1
2

if p > 2. Therefore, the series
∑∞

n=0

[ 1·3·5···(2n−1)
2n n!

]p
converges if p > 2. If p ≤ 2, this

series diverges since an ≥ 1
4n .

Example 5 often appears in calculus books as an exercise on Gauss’s test. (For
example, see [1, Exercise 18, p. 403].)

Example 6 (Hypergeometric series). Let α, β, and γ be positive numbers. Let

an = α(α + 1)(α + 2) · · · (α + n − 1)β(β + 1)(β + 2) · · · (β + n − 1)

n! γ (γ + 1)(γ + 2) · · · (γ + n − 1)
.

Then

a2n

an
= (α + n)(α + n + 1) · · · (α + 2n − 1)(β + n)(β + n + 1) · · · (β + 2n − 1)

(n + 1)(n + 2) · · · (2n)(γ + n)(γ + n + 1) · · · (γ + 2n − 1)

= (α + n)(β + n)

2n(γ + n)
·
[
(α + n + 1)(β + n + 1)

(n + 1)(γ + n + 1)
· (α + n + 2)(β + n + 1)

(n + 2)(γ + n + 1)

· · · (α + 2n − 1)(β + 2n − 1)

(2n − 1)(γ + 2n − 1)

]
.

Each of the rational expressions inside the brackets is of the form (α+x)(β+x)

x(γ+x)
.
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Let f (x) = (α+x)(β+x)

x(γ+x)
. Then

f (x) = (α + x)(β + x)

x(γ + x)
= 1 + (α + β − γ )x + αβ

x(γ + x)
.

So, if α + β < γ , then there is some N > 0 such that f (x) is increasing for all x > N .
Therefore, if α + β < γ , then

a2n

an
≤ (α + n)(β + n)

2n(γ + n)
·
[
(α + 2n − 1)(β + 2n − 1)

(2n − 1)(γ + 2n − 1)

]n−2

for all n > N . Similarly

a2n+1

an
≤ (α + n)(β + n)

(2n + 1)(γ + n)
·
[
(α + 2n)(β + 2n)

(2n)(γ + 2n)

]n−1

for all n > N . From this it is easy to show that

lim sup
n→∞

a2n

an
≤ 1

2
e

α+β−γ
2 <

1
2

and similarly

lim sup
n→∞

a2n+1

an
<

1
2

if α + β < γ . Thus, for positive numbers α, β, and γ , the hypergeometric series

∞∑

n=0

α(α + 1)(α + 2) · · · (α + n − 1)β(β + 1)(β + 2) · · · (β + n − 1)

n! γ (γ + 1)(γ + 2) · · · (γ + n − 1)

converges if α + β < γ .
If α + β ≥ γ , then (α+x)(β+x)

x(γ+x)
= 1 + (α+β−γ )x+αβ

x(γ+x)
> 1 for all x > 0. From this, one

can show that

α(α + 1)(α + 2) · · · (α + n − 1)β(β + 1)(β + 2) · · · (β + n − 1)

n! γ (γ + 1)(γ + 2) · · · (γ + n − 1)
>

αβ

γ n

for all n. Therefore, the series diverges if α + β ≥ γ .

In applying the second ratio test, a minor detail like reindexing the series can affect
the limits that occur in the test. This might not be expected by someone who is accus-
tomed to only the basic standard tests, such as the ratio test. To see this, consider the
series:

1
2

+ 1 + 1
25

+ 1
24

+ 1
23

+ 1
22

+ 1
213

+ 1
212

+ · · · + 1
26

+ 1
229

+ 1
228

+ · · ·

+ 1
214

+ · · · + 1

22(2k−2)+1
+ · · · + 1

22k−1
+ 1

22k−2
+ · · ·

If this series is indexed so that the first term is term number 1, then the second ratio test
is inconclusive. But if the terms are numbered starting with 2, then the second ratio
test determines that the series converges.
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Next, we state the mth Ratio Test in Theorem 2 and we state Corollary 3 as one of
its corollaries. The mth ratio test is a generalization of the second ratio test. The proofs
of Theorem 2 and Corollary 3 are similar to the proofs of Theorem 1 and Corollary 2.

Theorem 2 (The mth Ratio Test). Let {an} be a positive sequence and let m > 1 be
a fixed positive integer. Let L1 = lim supn→∞

amn
an

, L2 = lim supn→∞
amn+1

an
, . . . , and

Lm = lim supn→∞
amn+m−1

an
. Let l1 = lim infn→∞

amn
an

, l2 = lim infn→∞
amn+1

an
, . . . , and

lm = lim infn→∞
amn+m−1

an
. Let L = max{L1, L2, . . . , Lm} and l = min{l1, l2, . . . , lm}.

(i) If L < 1
m , then

∑∞
n=1 an converges.

(ii) If l > 1
m , then

∑∞
n=1 an diverges.

(iii) If l ≤ 1
m ≤ L, then the test is inconclusive.

Corollary 3. Let m be a fixed positive integer. If {an} is a positive decreasing se-
quence, then

∑∞
n=1 an converges if limn→∞

amn
an

< 1
m and diverges if limn→∞

amn+m−1
an

>
1
m .

Now we use Theorem 1 to give a new proof for the first half (the convergence half)
of Raabe’s test. This is the nontrivial half of the proof. The second half (the divergence
half) is relatively simple because the assumption in Raabe’s Test on an implies that
an > M

n for large n and some constant M , so we will skip the divergence part of the
proof.

Theorem (Raabe’s Test). If an > 0, εn → 0, and an+1
an

= 1 − β

n + εn
n , where β is in-

dependent of n, then
∑∞

n=1 an converges if β > 1 and diverges if β < 1.

Proof. Suppose an+1
an

= 1 − β

n + εn
n , where an > 0 and εn → 0. Assume 1 < β, and

choose α such that 1 < α < β. Then there is some N such that

an+1

an
< 1 − α

n

for n ≥ N . Then

a2n

an
= an+1

an
· an+2

an+1
· · · a2n

a2n−1
<

(
1 − α

n

)
· · ·

(
1 − α

2n − 1

)

for n ≥ N . Since 1 − x ≤ e−x for 0 < x < 1,

(
1 − α

n

)
·
(

1 − α

n + 1

)
· · ·

(
1 − α

2n − 1

)
≤ e−

(
α
n + α

n+1 +···+ α
2n−1

)

,

and since α
n + α

n+1 + · · · + α
2n−1 > α ln

(
2n
n

)
= α ln 2, we have

(
1 − α

n

)
·
(

1 − α

n + 1

)
· · ·

(
1 − α

2n − 1

)
≤ e−α ln 2 = 1

2α
.

Similarly,

a2n+1

an
= an+1

an
· an+2

an+1
· · · a2n+1

a2n
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<
(

1 − α

n

)
·
(

1 − α

n + 1

)
· · ·

(
1 − α

2n

)

≤ e−
(

α
n + α

n+1 +···+ α
2n

)

≤ e−α ln 2n+1
n ≤ e−α ln 2 = 1

2α
.

Thus

lim sup
n→∞

a2n+1

an
≤ 1

2α
<

1
2

and lim sup
n→∞

a2n

an
≤ 1

2α
<

1
2
.

Therefore, by Theorem 1,
∑∞

n=1 an converges. This completes the proof.

Our final result is the second ratio comparison test. This test uses the ratios appear-
ing in the second ratio test.

As we know, the proof of the ordinary ratio comparison test depends on the direct
comparison test. This is also the case with the second ratio comparison test, as we will
see in the proof of Theorem 3 below.

We would like to point out that the ratio comparison test is rarely used in computa-
tions, but it has very important theoretical uses. We expect this to be the case with the
second ratio comparison test as well.

Theorem 3 (Ratio Comparison Test). Suppose {an} and {bn} are positive sequences.
If a2n

an
≤ b2n

bn
and a2n+1

an
≤ b2n+1

bn
for large n, then

∑∞
n=1 an converges if

∑∞
n=1 bn con-

verges and
∑∞

n=1 bn diverges if
∑∞

n=1 an diverges.

Proof. Let N be such that

a2n

an
≤ b2n

bn
and

a2n+1

an
≤ b2n+1

bn
for n ≥ N . (1)

Let M = max
{

aN+m
bN+m

: m = 0, 1, . . . , N − 1
}

. Then we have

an

bn
≤ M for N ≤ n ≤ 2N − 1. (2)

Now, we show that (1) and (2) together imply

an

bn
≤ M for n ≥ N . (3)

If (3) is not true, let m be the least integer for which am
bm

> M . Now write m as 2 j or
2 j + 1, depending on whether m is even or odd, and apply (1) to get a smaller integer
than m for which (3) is not true. This is a contradiction.

Now, from (3) and the ordinary comparison test, the conclusion of the theorem
follows. This completes the proof.
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A Simpler Proof of a Well-Known Fact

Inspired by Xinyun Zhu’s “Simple Proof of a Well-Known Fact” on page 416 of
the May 2007 MONTHLY, we give an even simpler proof:

Theorem. For a positive integer N that is not a perfect square,
√

N is irrational.

Proof. Suppose that
√

N = a/b where a and b are positive integers with no
common factors. Then

√
N = a

b
= Nb

a
.

If two fractions are equal, with the first in lowest terms, then the numerator and
denominator of the second must be a common integer multiple (say c) of the
numerator and denominator of the first. Therefore, a = bc, so that a/b = c, and
hence

√
N is an integer, so N is a perfect square.

—Submitted by Geoffrey C. Berresford, Department of Mathematics,
Long Island University, Brookville, NY 11548
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