Math 476 - Abstract Algebra - Worksheet on Binary Operations

Binary Operations

Definition: A binary operation on a set S is a function that assigns to each **ordered** pair of elements of S a uniquely determined element of S. We will use the following notation

The set S is said *closed* under the operation *. We call the data of a set S together with a binary operation *, written (S, *), magma.

Group activity: Read and discuss the definition of binary operation. In case you do not understand some concepts feel free to ask. Then answer the following questions.

- (a) Give an example of magma and use the above notation to describe it.
- (b) Can you give an example of a set S and operation * such that S is not closed under *? (Notice that in this case (S, *) is **NOT** a magma)
- (c) Discuss in your group the meaning of the word "ordered" in the above definition. Give an example of binary operation such that, in general, $a * b \neq b * a$.
- (d) How would you call a binary operation for which a * b = b * a for all a and b in S? Give an example.
- (e) Choose a member of your group to share your work with the class.

Cayley's Tables

When we have finite magmas (S, *), that is to say when the set S is finite, it is convenient to represent the operation through the so called **Cayley table**. We will learn how to construct/interpret Cayley tables through examples.

Recall that the set

$$\mathbb{Z}_n := \{0, 1, 2, \dots, n-1\}$$

is the set of integers mod n. On this set there are usually defined two operations, + and \cdot , called sum and multiplication mod n. You can think this operations as adding or multiplying integers with a given remainder in the division by n. For example

$$3+2\equiv 1 \mod 4$$

means "if you add an integer whose remainder, in the division, by 4, is 3 to an integer whose remainder, in the division by 4, is 2, you get a number whose remainder in the division by 4 is 1". I hope you appreciate the brevity of the above expression.

Group activity: Below you have the Cayley table for the magma $(\mathbb{Z}_5, +)$, keeping in mind that the operation goes clockwise, discuss in your group the meaning of it.

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

In the space below, write the Cayley tables for (\mathbb{Z}_5, \cdot) , (\mathbb{Z}_6, \cdot) , $(\mathbb{Z}_2, +)$, and (\mathbb{Z}_2, \cdot) , then discuss in your group if you notice some interesting pattern.

Let $S : \{a, b, c, d\}$ and consider the magma (S, *) defined by the following Cayley table

*	a	b	с	d
a	с	b	d	b
b	a	d	с	с
с	d	b	a	a
d	с	с	a	b

Note that this is a magma because the binary operation is closed. Perform the following computations in (S, *).

- (a) c * b =
- (b) b * c =
- (c) (a * b) * c =
- (d) a * (b * c) =
- (e) a * b * c =

Do you notice something unusual?

Solve the following equations for the variable x in (S, *). In case you have difficulties in your group, feel free to ask.

- (a) a * x = b
- (b) x * a = b
- (c) x * x = c
- (d) (x * x) * x = x * (x * x)

Properties of Binary Operations

Definition: We say that a binary operation * on a set G is *associative* if, for all a, b and c in G, we have

$$(a * b) * c = a * (b * c)$$

If in a magma (G, *), the binary operation * is associative, we say that (G, *) is a *semigroup*.

Group Activity

- (a) Write two different examples of **associative** binary operations (you should know already some associative operations in some sets of numbers or matrices), where, instead of a, b, and c, you write specific elements.
- (b) Let $G = \{0, 1, 2\}$. Say whether the binary operation defined by the following Cayley table is associative. Justify your answer.
 - $\begin{array}{c|cccc} * & 0 & 1 & 2 \\ \hline 0 & 1 & 1 & 2 \\ 1 & 0 & 2 & 2 \\ 2 & 0 & 1 & 0 \\ \end{array}$
- (c) Let $G = \{a, b\}$. Determine as many different associative binary operations as you can. Write the corresponding Cayley tables in order to define the operations.

Definition: Let G be a set and * an associative binary operation on G (that is to say (G, *) is a semigroup). We say that (G, *) has an *identity* if there exists an element $e \in G$ (called identity) such that:

$$e * a = a * e = a$$

for all $a \in G$. A semigroup (G, *) with an identity is called *monoid*.

Group Activity

- (a) Discuss the definition of identity in your group. Try to list all the identities (with the related operations) you have seen so far.
- (b) Show that the set of natural numbers $\mathbb{N} := \{1, 2, 3...\}$ equipped with the multiplication is a monoid. If you have difficulties feel free to ask.
- (c) Prove that, in a monoid (G, *), the identity is unique. Start with assuming that there are two identities e and e', your goal is to show that e = e' only by using properties of identity.

(d) Let $G = \{0, 1, 2, 3\}$ equipped with the operation * described in the Caley table below. Is there an identity element? If yes, what is this element? Justify your answer.

*	0	1	2	3
0	2	1	0	3
1	1	1	1	1
2	0	1	2	3
3	3	1	3	1

(e) How do you determine an identity from a Cayley table?

Definition: Let (G, *) be a monoid (that is to say the binary operation * is associative and there is an identity e). Let $x \in G$, we call *inverse of* x, written x^{-1} , an element of G such that

$$x * x^{-1} = x^{-1} * x = e.$$

Group Activity

- (a) Let $\mathbb{Z} := \{\dots -2, -1, 0, 1, 2\dots\}$ be the set of integers, and consider the operation sum +. Is $(\mathbb{Z}, +)$ a monoid? In case it is, what is the identity? If x = 17 can you write x^{-1} ? Is there any element of \mathbb{Z} that does not have an inverse?
- (b) Answer the same questions of part (a), but now consider (\mathbb{R}, \cdot) .
- (c) Answer the same questions of part (a), but now consider (\mathbb{Z}_6, \cdot) . You may write the Cayley table in order to help you.

(d) Let $GL(2,\mathbb{R})$ be the set of 2×2 matrices, with coefficients in \mathbb{R} , whose determinant is not zero, and consider as an operation the product of matrices. Is $(GL(2,\mathbb{R}), \cdot)$ a monoid? Justify your answer (you may state known results from linear algebra). Let $x = \begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix}$. What is x^{-1} ?