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Abstract

In this paper we consider the enumeration of ordered set partitions avoiding a
permutation pattern of length 2 or 3. We provide an exact enumeration for avoiding
the permutation 12. We also give exact enumeration for ordered partitions with 3
blocks and ordered partitions with n-1 blocks avoiding a permutation of length 3. We
use enumeration schemes to recursively enumerate 123-avoiding ordered partitions with
any block sizes. Finally, we give some asymptotic results for the growth rates of the
number of ordered set partitions avoiding a single pattern; including a Stanley-Wilf
type result that exhibits existence of such growth rates.
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1 Introduction

Pattern avoidance in permutations was first introduced by Knuth [I6], and continues to
be an active area of research today. Let S, denote the set of permutations of length n,
and consider 7 € S, and p € §,,. We say 7 contains p as a pattern if there exist indices
1< <ig <-vr <pyg < by < nosuch that m;, <, if and only if p, < p,. In this case,
we say that m; m;, ---m is order-isomorphic to p. Otherwise, we say m avoids p. Further,
let S,,(p) denote the set of permutations of length n that avoid p, and let s, (p) = [S,(p)|. It
is straightforward to see that s,(12) = 1 for n > 0 because the only permutation of length

n that avoids 12 is the decreasing permutation. It is also well-known that given any p € Ss,
2n

sn(p) = C,, where C,, = (L)l is the nth Catalan number [21].
n

Pattern avoidance has been studied in contexts other than permutations. In particular,
the notion of pattern-avoidance in set partitions was introduced by Klazar [I3], with further
work done by Klazar, Goyt, Sagan, and Mansour [0, [7, 14! [15] 18|, 20]. More recently, Goyt
and Pudwell introduced the notion of colored set partitions and considered three distinct
types of pattern avoidance in this context [8 0]. In this paper, we consider a definition of
pattern avoidance most closely related to that of [9].

A partition p of the set S C Z, written p - S, is a family of nonempty, pairwise disjoint
subsets By, By, ..., By of S called blocks such that U¥_, B; = S. We write p = B,/Bsy/ ... /By
and define the length of p, written ¢(p), to be the number of blocks. Note that because
By, ..., By are sets, the order of elements within a block does not matter; for convenience
we will write elements of a block in increasing order. We are particularly interested in the
set of ordered partitions of [n] = {1,...,n} into k blocks, written OP,, ., which is the set
of partitions p such that p b [n], {(p) = k, and where the order of blocks is important.
For example 13/2/4 and 4/13/2 are two distinct members of OP43. In the sequel, we
also let OP,, = U_,OP,,, and let OPy, 4, be the set of ordered partitions p such that
ph b+ -+ b, l(p) = k and |B;| = b; for 1 < i < k. Similarly, we let op,, , = [OPy 4],
op,, = |OP,|, and OPy,....bx] = ’O,P[bl,...,bk]l

Given a partition p € OP,,, and a permutation p € S,,, we say that p contains p if there
exist blocks By, ..., B;,, where iy < iy < -+ < iy, and there exists b; € B;, such that
by - -+ by, is order-isomorphic to p. For example, 14/56/2/3 € OPg4 contains the pattern
p = 312, as evidenced by b; =4, by = 2, and b3 = 3.

Avoidance in ordered partitions is attractive in that three special cases are directly related
to other known enumerative results. First, note that for any p € S,,, we have s,(p) =
op, ..., 1](/)). That is, a permutation is equivalent to an ordered partition where all blocks

are of size 1. Second, we will see in the next section that OP,, ;(12) is in bijection with the
set of integer compositions of n into k£ parts. Finally, the definition of avoidance for ordered
partitions described above corresponds to the pattern-type avoidance detailed in [9] if we
considered unordered partitions where all elements in block ¢ are given color ¢;, and avoid
the colored pattern plp3--- p™ rather than pattern p.

In Section B, we give closed formulas for op,, ;(12), op,, 35(123), and op,, 3(132). In Section
Bl we give a closed formula for op,, ,, ;(123) and generalize this to give a closed form for



OD(by bo,...b) Where b; =1 for at least k& — 1 values of ¢. In Section }, we give a bijective proof
that opy,  ,1(123) = opy, ,(132) for any list of positive integers by, ..., by, settling the
question of whether opy,, 1(p1) = opy, 4, (p2) for any patterns pi, pa € Ss. In Section 5
we investigate the case of oppp, 9 (123) and continue with a monotonicity result in Section
6. Then, in Section 7, we prove that a Stanley-Wilf limit exists as n tends to infinity for all
the sequences op,, ;.(p) for fixed p and k > [p|. Below is a table of our enumerative results.

Ip| | Set Enumeration Theorem Number
2 | op,x(p) ) Theorem 1
3 | op,k(p) (%2 + 32 1> 2"+ 3 Theorems 2, 3, and 7
n— 2(2n—2
3 Opn,n—1<p) % Theorem 4
o 5k
3 | opg1,... P ( kﬂ)gfll)(”"“) if n >k >1 | Thoerem 6
~k

Table 1: Table of Enumerative Results

2 A few simple cases

In this section, we consider a few special cases of the pattern avoidance problem intro-
duced in the introduction. In particular, we consider op,, ;(12), op, 3(123), op, 3(132), and
0P, ,_1(132). The simplest of these cases is that of avoiding the pattern p = 12.

op,(12) = (Z B D

Proof. Notice that a member of OP,, ;, avoids the pattern p = 12 if and only if for each block
B;, all elements of each block B; where j > ¢ are strictly less than all elements of block B;.
Once we know the sizes of blocks By, Bs, ..., By, the 12-avoiding partition is determined:
the largest |B;| elements are in block 1, the next largest |Bs| elements are in block 2, and so
on. Thus, opn,k(12) is merely the number of integer compositions of n into k parts, which is

well known to be (Zj) O

Theorem 1. Forn > k,

Note that a similar argument shows that op,, ,(21) = (Zj) In fact, as with pattern-

avoiding permutations, a few natural symmetries simplify our work. Given permutation
pattern p = py - pm, define the reversal of p, written p", to be p" = pppm_1- - p2p1, and
define the complement of p, written p° to be p° = (m+1—p1)(m+1—po)---(m+1—py).
Since complement and reversal both provide involutions on the set of permutations and on
the set OP,, we have that op, ;(p) = op,x(p") = op,1(p°) = op,.((p")°). Unlike the
case of pattern-avoiding permutations, we no longer have a well-defined notion of inverse,
so reversal and complementation are the only natural symmetries of which we may take
advantage.



For the case of patterns of length 3, we see that 123" = 321, 132" = 231, 231¢ = 213,
and 213" = 312, so we have that op, ;(123) = op,;(321) and op, ;(132) = op,,(231) =
op,, 1(213) = op,, ;(312). In Section d we will show that op,, ,(123) = op,, ;(132) by demon-
strating the stronger claim that opy,  4,1(123) = opy, _;,1(132) for any choice of block sizes
b1,bs, ..., bg. For now, though, we consider the special case where k£ = 3.

Theorem 2. Forn > 3,

2

3
0Dy 5(123) = (% + g - 2) 2" 43

Proof. 1t is easy to see that

n—2n—l—an—a+l min{f—1,b} /{—1 n—=~{
op,5(123) =Y ) ( i ) (a - 1)’

a=1 b=1 (=1 i=max{0,/—1—c}

where a,b,c = n — a — b represent the sizes of blocks 1, 2, and 3 respectively, ¢ is the
smallest number in block 1, and ¢ represents how many numbers smaller than ¢ are in
block 2. Using standard algebraic techniques the above sum above may be reduced to

n?®  3n
—+— =2 2"+ 3. O]
(5% -2)

Next, we consider op,, 5(132). We will show why op,, 5(123) = op,, 5(132) via a bijection
in Section 4, but first, we consider how to count members of OP,, 5(132) directly.

Theorem 3. Forn > 3,

2

3
oDy 5(132) = (% + g - 2) 2" 43

Proof. Consider p € OP,,3(132). We have two cases: either p avoids the pattern 12 in the
first two blocks, or p contains the pattern 12 in the first two blocks.

In the first case, there is no restriction on the values of elements in the third block, so we
may choose a elements (1 < a < n —2) to be members of Bs. Since we assume that there is
no 12 pattern in the first two blocks, once we choose the number b (1 < b <n —a—1) of

elements of By, we know the smallest b elements of By and Bs are in By, and the remaining
n—2n—a—1

n

elements are in B;. Thus, there are E g ( > possible partitions of this form.
a=1 b=1 a

The second case is more complicated. Since we know there is a 12 pattern in the first

two blocks, let i be the smallest element of By that participates in a 12 pattern and let j
be the largest element of B, that participates in a 12 pattern. By definition of ¢ and j,
we know that there are no elements of By smaller than ¢ and there are no elements of Bs
larger than j. Further, there are no elements of B3 that are both greater than 7 and less
than j. Let a; be the number of elements of By that are greater than ¢ but less than j, and

4



let as be the number of elements of By that are less than i. Further, let b be the number
of elements of B; that are greater than j. Once we have determined, ¢, 7, a;, as, and b, it
remains to choose which a; + as elements appear in By and which b elements appear in B;.

s 5 355 () SRR 1)

i=1 j=i+1 a1=0 a2=0 b=0 i=1 j=i+1 a1=0
possible ordered partitions.

Together, we have that

n—2n—a—1

op, 5(132) = ; g ()
TR0

Z].j i+1 a1=0 a2=0

Sy

i=1 j=i+1 a1=0

and through standard algebraic manipulation, these sums simplify to

2

n 3n
op,, 3(132) = (g + <~ 2) 2" + 3,

as desired. u

3 The Case of n — 1 Blocks

Notice that having & = 3 blocks is the minimum non-trivial number of blocks to consider
when avoiding a pattern of length 3. Similarly, as mentioned above, & = n blocks is equivalent
to considering pattern-avoiding permutations, so the maximum non-trivial number of blocks
to consider is & = n — 1. In this section we determine op,, ,, ;(123), a result that we believe
could be the starting point of much new work.

Theorem 4. Forn > 1,

30— DA(57)

Opn,n71(123) = TL(TL i 1)

Theorem Ml is a corollary of Theorem B which was predicted based on computation data
and Zeilberger's Maple package Findrec [2§].

Theorem 5. We have

1 ifn =2, and
0Py p-1(123) = § (4n — 6)(n — 1)°
(n—2)2(n+1)

OPp_1,—2(123) n>2



We will prove Theorem [l by a series of lemmas. In particular:

Lemma 1. [f the list [cy, . .., c}] is a permutation of the list [by, ..., bg] then opp, 41(123) =
Op[cl,...,ck](123)'

By Lemma[Il then we have the following Corollary.

Corollary 1. Forn > 2, op, ,_1(123) = (n —1)opp 1, .. 1;(123).
’ bl b

n—2

It then remains to compute op, 1 1)(123). We will show that
Y )

3(n—1)(*"7)
Lemma 2. Forn > 2, opp 1 1(123) = -
(AL n(n +1)

n—2

The proof of Lemma [ relies on the following Lemma.

Lemma 3. The number of 123-avoiding permutations of length n that begin with i is given
(n—2+d)!(n—i+1)
(1—1)n!

by c,i =

We refer the reader to [5] for a proof of Lemma 3.
Now, we prove the other lemmas above.

Proof of Lemmall. We will actually show that opj,, 4, 4,01 5 (123) = 0Dy, g g 5,1 (123)
for any 1 < ¢ < k — 1 and for any block sizes by, bs,...,b, > 1. Since any permutatlon of
[b1, ..., bg] can be obtained by adjacent transpositions, this suffices to prove Lemma [I]
Consider m € OPp,,. b biss,...0p](123). We construct f(7) € OPp,.. b,016s,...5, (123) with
the following observations. For each member of j € B;,; exactly one of the following is true:

1. 7 is not part of a 12 pattern involving an element not in B;.

2. 7 plays the role of a 1 in a 12 pattern involving an element not in B;. We will call an
occurrence involving By, where ¢ > ¢ + 1 is the minimal value for which this happens,
a critical occurrence.

3. 7 plays the role of a 2 in a 12 pattern involving an element not in B;. We will call an
occurrence involving By, where ¢ < i — 1 is the maximal value for which this happens,
a critical occurrence.

Clearly 1 and 2 or 1 and 3 cannot occur simultaneously. If 2 and 3 occur simultaneously
then there is a copy of 123 in 7.

Now, there is a unique way to sort the elements of B; U B;,; into blocks of size b; 41
and b; so that the resulting partition avoids 123 and the critical occurrences of 12 remain
occurrences of 12. Let B; and Bz+1 be blocks 7 and ¢ + 1 in f(7), as defined below.

First the elements of B;;; that are not involved in a critical 12-pattern are placed into
E. If there are a elements of B;,; playing the role of a 1 in a 12-pattern, then there is some
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number in a later block that plays the role of 2 in all critical occurrences of 12 with each
of these a elements. The largest a elements of B; U B;;; that are less than j are placed in
E. If there are b elements of B;,; playing the role of a 2 in a 12-pattern, then the largest b
elements of B; U B, are placed in E

All other elements of B; U B,y are placed into Ei:l.

This is indeed the unique way of rearranging these elements so that we swap the sizes of
blocks i and 7 + 1, maintain all critical occurrences of 12, and still avoid 123. First of all,
there must be a elements less than 7 moved to B;, but if they are not the largest a elements
less than j, we form a 123 pattern using one of these elements, a larger element less than
j in B;i1, and j. Also, there must be b elements in B; that play the role of 2 in critical
occurrences of 12. If these are not the largest possible elements in B; U B, 1, then we create
a 123 pattern using the 1 from the critical occurrence, one of these element from E, and a
larger element in B, .

Thus, f(m) consists of leaving all blocks other than B; and B;;; unchanged, and rear-
ranging B; and B;,; as described above. O]

For example, consider the 123-avoiding partition 7 = 5/37/146/2. Let i = 2. We wish
find a partition with block sizes by = 1, by = 3, b3 = 2, and by = 1 that avoids 123. Notice
that of the three elements in By = {1,4,6}. 1is a 1 in the 12- pattern 1/2, 4 is not involved
in a 12-pattern outside of blocks By and Bs, and 6 is a 2 in the 12-pattern 5/6. Thus,
f(5/37/146/2) = 5/147/36/2.

Proof of Lemmal2. To construct a 123-avoiding partition where the first block has size 2 and

all other blocks have size 1, we may begin with a 123-avoiding permutation of length n — 1

(n—24+0)(n—i+1)
(i —1)n!

Then, we insert an element larger than ¢ into the first block. (Here, inserting j means
that all integers in the permutation greater than or equal to j are incremented by 1, and all
entries less than j remain the same.) This new ordered partition certainly avoids 123, since
the new element being involved in a 123 pattern means that ¢ would have been involved in
a 123-pattern, which contradicts that we began with a 123-avoiding permutation.

If the permutation begins with 4, then there are (n — i) possible numbers to insert above
i to obtain an ordered partition of [n]. Summing over all possible values for i, we obtain

that begins with 7. By Lemma [3 there are ¢, ; = such permutations.

n! _ iy (n=34+1)(n—1 3(n — 1)(2:__12)
opp1, ... 1)(123) = Zl(n —0)Cpo1, = Zl(n - 2)( i 1)'(7)1<_ 0 ) _ i
n—2 - N D

Now, combining Lemma [2] with Corollary [ gives us

3(n—1)(>"7) ~3(n— 1)2(>*2)

n—1 n—1

nin+1)  nm+1)

OPpp1(123) = (n — 1)

Y

which proves Theorem [l
Note that when n = 2, this equation simplifies to



321207 _30) |
22+1) 2.3

0P2,1(123) =
And when n > 2,

(4n — 6)(n — 1)2 (4n—6)(n—1)2 3-(n—2%(*"3)

123) = :
(n—2)2(n+1) OPn—1.n-2(123) (n—2)%(n+1) (n—1)n
_3@n—6)(n - 1% _3(n— 12(>"2)
(n+1)n (n+1)n ~’
which confirms Theorem [B
Note that via algebraic manipulation, our result for OPp1, ..., 1](123) can be written as
3(271—2) -
123) = —"=24,
Op[ll,...,l]( ) (n+1)
n—2

We may generalize to obtain the following:

Snony 4G
OPis1,..., 1](123) = Z g JCn—2i= , and
——

n—3

1
2 in—i

op (123) = ( )cn_&,. = -

[4,1,...,]_] Z 3 (n+1)

i=1

n—4
In general, we have that

n—(p—1) . ( 2n—p
n—1 P+ 1)(n_ )
op,1. . 1)(123) = ( )cn_ RS &
@717-_71] ; p_l (p ) (n+1>
Therefore,

Theorem 6. Forn > p > 1, the number of 123-avoiding ordered partitions of n into n—p-+1
parts where there is one part of size p and n — p parts of size 1 is given by

(n—p+p+1)(7)
(n+1) ’

4 A Bijection and Pattern Avoidance in Words

As was mentioned in the previous section, the usual symmetries of reversal and complemen-
adapting the familiar bijection of Simion and Schmidt [11].7."'7110 use their bijection we will
need a notion of left-to-right minima for set partitions. Let p = By/By/ ... /Br € OP, then
we will say that element a € B; is a left-to-right minimum if a is smaller than every element
appearing in blocks Bj for 1 < j <7 — 1.



We will first describe the bijection through example. Consider the ordered partition
59/38/1267/4. This partition avoids 123. Notice that the left-to-right minima in this par-
tition are 1, 2, 3, 5, and 9. Also, notice that the other elements in this partition form a
decreasing sequence if we place the elements in the same block in decreasing order. Remove
the elements that are not left-to-right minima. Now we have the partition 59/3/12/0), where
the second block is missing one element, the third is missing two elements and the last block
is missing one element. We will fill the gaps in the blocks working from left to right by plac-
ing the smallest remaining elements that is larger than the smallest left-to-right minimum in
the preceding block. So we would place the element 6 in block 2, obtaining 59/36/12/0). We
would then place 4 and 7 in the third block, producing the partition 59/36/1247/0. Finally,
we place 8 in the last block producing 59/36/1247/8. This partition is 132 avoiding.

The inverse of this bijection is achieved by placing all of the elements other than the
left-to-right minima in descending order.

Theorem 7. Forn > 1, opy, 4,1(123) = opy, 4,1(132).

Proof. Let ¢ : OPp,,. 5,(123) = OPp, ... 4,1(132) be as follows. For p € OPp, . 4,1(123), we
will construct a corresponding partition ¢(p) € OPp, p,.... 5, (132).

First find the left-to-right minima of p and leave them fixed. Now, remove the other
elements of the partition. Working from left to right fill in the missing entries in each block
by placing the smallest remaining element that is larger than the preceding left-to-right
minimum. This new partition will avoid 132, since if a copy of 132 did appear, then one
would appear with a left-to-right minimum representing the 1 in the copy of 132. This
would imply that the element representing the 2 was placed in a block after then element
representing the 3, which contradicts the prescribed placement of the elements. Thus, no
copy of 132 appears.

The inverse of this construction is to again leave the left-to-right minima in place and
place the remaining elements in descending order. Since the partition will essentially consist
of two decreasing sequences, there is no way to form a copy of 123. [

In his thesis [2], Burstein shows that the number of words avoiding the permutation 123
is the same as the number of words avoiding the permutation 132 using analytic techniques.
Jelinek and Mansour [I1] and Bréndén and Mansour [I] give bijective proofs of the same
fact. For more information on pattern avoidance in words see [I0]. It turns out that the
bijection above can be used to give another bijective proof of this fact. We will need to first
discuss how words and ordered partitions are related.

Using the concept of a permutation graph, we define an ordered partition graph to be
a permutation graph where we allow more than one entry in a column. For example, the
graph associated to the partition 4/13/256 is given in Figure 1.
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Figure 1: Graph of 4/13/256

Let £ > 1 and n > 1 then the set of words of length n with letters from the alphabet
[k] is denoted [k]". We say that a word w € [k]" contains u € [¢]™ if there are indices
11 < g < -+ <y, such that the word w;, w, ... w;,, is order isomorphic to u. Otherwise we
say that w avoids u. We let [k]"(u) be the set of all w € [k]™ that avoid u. For example
the word 232133 € [3]° avoids the word 123. Since permutations are words in [n|" without
repeated letters, we can consider words that avoid permutations as well.

We may encode a word using a graph like that above. In the case of a word, however,
we will allow more than one entry in a row. The word 232133 has graph.

(]

1234567
Figure 2: Graph of 232133

As was mentioned in Section 2, we have three symmetries reversal and complementation
which were defined, and inverse which is not a symmetry of ordered partitions, since the
inverse operation will not create an ordered partition from any ordered partition with a
block with more than one element. Since the inverse operation is applied to an ordered
partition by simply reflecting the graph of the partition in the line y = x, we observe that
an ordered partition becomes a word when we apply the inverse operation. Observe that the
2321337 = 4/13/256, where i is the inverse operation.

This gives us that the inverse operation i is a bijection between the set of words [k]"
and the set of ordered partitions with k& blocks where we allow blocks to be empty. For
example the word 255332255 € [5]° is mapped to the ordered partition ()/167/45/()/2389,
that is 255332255" = (0/167/45/0/2389. Notice that the first and fourth blocks are empty.
We also observe that the permutations 123 and 132 are fixed under the inversion operation.
Thus, if a word w avoids 123 or 132 then so does w® and similarly for ordered partitions.

Recall the map ¢ : OPp, . 4,1(123) = OPyp, . 4,1(132) from above. We may extend this
map to ordered partitions where we allow some empty blocks, by simply leaving these blocks
empty. For any w € [k]"(123), we have that (¢(w'))® € [k]"(132). Let v be the operation
where we invert a word to form an ordered partition then apply the map ¢ above and then

10



invert again to produce a word. We note that ¢ itself is an involution, and hence we have
the following theorem:

Theorem 8. Forn > 0,
|[K]"(123)] = [[k]"(132)].

The relationship between ordered partitions avoiding p and words avoiding p~! allows us
to make use of existing tools for the computation of opy, ;1(123). Informally, an enumera-
tion scheme is a system of recurrences that enumerate members of a family of sets. Such enu-
meration schemes were first introduced by Zeilberger [27] in the context of pattern-avoiding
permutations. Later, Vatter [25] improved the efficiency of the schemes and Pudwell [19] gen-
eralized enumeration schemes to apply to pattern-avoiding words. One particularly attractive
point of enumeration schemes in these contexts have been that the recurrences involved in
enumeration schemes can be completely deduced by computer algorithm. In particular the
algorithm presented in [19] deduces a family of recurrences that computes the number of
123-avoiding words with exactly b; copies of ¢ for 1 < ¢ < k. Equivalently, this recurrence
further conjecfufes about 123-avoiding ordered partitions, which we explore in subsequent
sections of this paper. An implementation of the enumeration scheme for this particular case
is provided at the fourth author’s website http://faculty.valpo.edu/Ipudwell /maple.html.

5 The case of blocks of size 2

In this section, we consider the case where all partition blocks are of size 2. Using the
enumeration scheme algorithm described in Section 4, we efficiently compute opp,  (123),
which is sequence A220097 in the Online Encyclopedia of Integer sequences [22]. Further
analysis with Zeilberger’s Maple package FindRec [28] predicts that this sequence satisfies
this second order linear recurrence:

Conjecture 1. opg 2](123) =
Y y Y
329k — T49k* + 514k — 96 3(14k3 — 39k* + 31k — 6)

op (123) + op (123).

k—1 k—2

2%k(2k + 1)(7k — 9)

for k > 3, with op(123) = 1 and opp, 5(123) = 6. Note added in proof: Conjecture 1
has recently been resolved by Chen et al (20134) [4].

The asymptotic behavior of this sequence resulting from this recurrence can be analyzed
using the Birkhoff-Trjitzinsky method [26] (implemented in AsyRec [29]), which predicts the

(- 22)
behavior to be ~ .1583 - 12kk3—§§2’f.
Since these experimental techniques predict the sequence oPR, ... .2 (123) to grow as 12%,
&v7—’

k
it is interesting to give an explicit analysis of this case to provide bounds on the asymptotics;

11



the lower bound of op[lz/k 9 (123) > 8 can be exhibited by elementary means as follows: If

k
4k
7 is a 123-avoiding permutation in Sy, (of which there are 2<k2j—)1 ~ 16%), then 7 corresponds to
an ordered 123-avoiding partition with k consecutive blocks of size 2 each, where the elements
in each block are ordered. Each of these partitions corresponds to 2¥ ordered partitions with

part sizes 2, it follows that

(50)
Popy | 9(123) > %~ 16,
k

which establishes the claim that op[12/k 2}( 123) > /8.
) Y

k/2

6 Monotonicity and Unimodality of op, (p)

The discussion in Sections 2] and [ certainly suggests that op, ;(123) is not monotone in
k; for example, for n = 4 the sequence {op,, ;(123) : 1 < k < 4} is {1,14,27, 14}, as seen
by elementary counting, results from Section Bl and the fact that C, = 14. The sequence,
however, is unimodal. This kind of unimodality is for a fixed value of n, as k varies in
[1,n]. In a similar vein, Theorem @ shows that op,,,, ;(123) ~ K -4"/y/n, whereas it is well
known that op,, ,(123) = C,, ~ K'4" /n*?, a smaller number. Here the unimodality question
involves asymptotic considerations, and the solution is likely far more complex. We can,
as we do towards the end of the section, couch the unimodality problem in terms of the
associated Stanley-Wilf constant, whose existence as a finite constant does not even follow
from the results of Section 8 when k = k,, — oo as n — oo. We provide below a first result
aimed at gaining an understanding the easier question of eventual monotonicity:

Theorem 9. op, ,(123) > op,, 5(123) for n sufficiently large.

Proof. We start with a partial injection. Consider a partition p with three blocks By/Bs/Bs
with no block being a singleton. If n € Bs we map p to p' := By/Bs/{n}/Bs \ {n}. If
n € By, we map p to By/{n}/Bs \ {n}/Bs, and if n € B; we map p to the 4-partition
p = {n}/B; \ {n}/By/Bs. 1t is clear that each of the 4-partitions avoid 123 and that the
mapping p < p’ is an injection. Thus the number of 3-avoiders with each block having 2 or
more elements is less than the number of 4 avoiders with one block being {n} and up to one
more singleton block.

Simple over-counting shows that the number of 3-partitions (not necessarily avoiding)
with at least one singleton block is no more than 3 -n - 2" (we choose the singleton in n
ways; place it in one of 3 positions; and then choose the two other parts by selecting any
subset of the remaining elements). It is now left to show that the number of 4-avoiders with
no singleton block is at least as large as 3-n-2"". We construct a lower bound on these by
the following three-step process:
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i make a 123 avoiding 3-partition of {3,4,....,n — 3} in roughly @ - 2" ways (the

exact number is given by Theorem 2);
ii add n — 2, 2 and 1 to the first, second and third blocks respectively;
iii define the first block to be {n — 1,n}.

(n—5)
8

This completes the proof since 3 -n - 2" < - 2775 for n sufficiently large.

]

We end with a conjecture that states that eventual monotonicity holds in a certain
restricted sense.

Conjecture 2. For each fized k, there exists ng(k) such that for each p € S,, with k > m
and n > no(k),

OPni(p) > 0D, 1 1(p) > -+ > 0p,,(p).

Some of the open questions that are related to unimodality are as follows: We know that
lim oprll{;(123) =2, and lim opy/(123) = 4. For which k = k, does, e.g., lim 0pi{,?(123) =37

Is sup;_;, lim 0p2{"(123) < 00? Is sup;_;, lim oprll{,?(123) = 47 Are the numbers op,, ;(p)

unimodal for 3 < k < n and where do they attain their maximum? What is the behavior of
the function k,, at which the putative unimodality occurs?
Note added in proof: Conjecture 2 has recently been resolved by Kasraoui (2013+) [12].

7 A Stanley-Wilf Type Result

The Stanley-Wilf conjecture states that for every permutation p € §,,, there is a constant
C such that the number |S,(p)| of permutations of length n which avoid p is asymptotic to
C™. The conjecture was first proved by Marcus and Tardos [I7]. We will prove a similar
result for ordered partitions.

Let p € S,,. Define OP;, ;. (p) be the set of ordered p-avoiding partitions of [n] with &
blocks, where some of the blocks may be empty. Let op*, ,(p) = |OP;} .(p)|. We first prove,
using Fekete’s 1923 lemma for subadditive functions (see [24]), that a Stanley-Wilf [I7] type
result holds for op*, ;(p).

Theorem 10. lim op*i{:(

n—o0

Proof. Let p € S with £ < k. Fix m,n, and consider 7 € OP;, ., .(p). We shall show that 7
uniquely determines a pair (7, 7o) where m € OP;, ;. (p) and m, € OP}, ;. (p). The mapping
7w < (my,mo) that does this is the one that defines 7; as the original partition with only
the numbers {1,2,...,m} placed in the same k blocks as before, and with 7y defined as the
original partition with only the numbers {m+1,m+2,..., m+n} placed again in the same
k blocks as before, but renumbered as {1,2,...,n}. To give an example, with m = 5;n = 6,
the ordered 321-avoiding block partition 1/0/3,4,6,10/2,5/7,8/9,11 decomposes into the
two 321-avoiding parts m = 1/0/3,4/2,5/0/0 and m = (0/0/1,5/0/2,3/4,6. It follows that

p) exists as a real number in [1,00) for each fized p and k > |p|.

Op*ern,k(p) < Op*m,k’(ﬁ) ’ Op*n,k(p)7
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or that
log Op*m+n,k (p) S log Op*m,k (p) + IOg Op*n,k (p)7

which shows that the function log op*, ;(p) is subadditive of n. Fekete’s lemma ([24]) thus
shows that .
log op™,, 1 (p)

I

log op*,, 1.(p)
m — = lIlf
n—oo n n

. . . log op™ . . . .
in particular lim,, . T’“’“(p) exists as a number in I = [—00,00) since the infimum of a

non-empty real sequence is always in the interval /. Since in our case op*,, . (p) > 1, it follows
that lim,, w € [0,00), and thus lim,_,« op*}l{,?(p) € [1,00), as claimed. O

We now show that a Stanley-Wilf limit exists even when blocks are not allowed to be
empty, and that the corresponding limit is the same as that for op*,, ;(p).

Theorem 11. lim,, opyll{:(p) exists in [1,00) for each fized p and k > |p|.

Proof. Let p € S,,. Suppose that m < k. We will prove the result by showing that there is

a function ¢(k) that satisfies Op;’é}f)(p) < op, 1(p) < op*, x(p).

The second inequality is trivial. Assume that k& < n. We prove the first inequality by
providing an injection from OP;, ;. (p) into OP,k(p) x [0, k]**, where [0, k]** is the number
of words with 2k letters using the alphabet [0, k] = {0, 1, ..., k}.

Let 7 € OP}, ,(p), and assume that p does not end with m. We construct (7, w) €
OP.x % [0, k]?* in the following way. First, move all of the empty blocks of 7 to the end of
keeping the relative order of the nonempty blocks unchanged, and call this new partition .
(Note that if p ends with m we move the empty blocks to the beginning of 7 and proceed
as below.) Now, the first k letters of w are given by w; = j if the i'® block of 7y was the
4t block of 7, and w; = 0 if the i** block of 7, is empty. Since the relative order of the
nonempty blocks of m have not changed 7y must be p avoiding.

Now, suppose there are a; empty blocks in my. Remove the a; largest elements of 7
(that is the elements n — a; + 1 through n), and put one in each of the empty blocks at the
end of my so that they are in increasing order. Call this new partition 7.

There can be no copies of p involving only the first £ — a; blocks since such a copy would
have been a copy in my as well. If a copy of p involves one of the last a; blocks, then the
element in the last block used would have to represent m since it would be the largest of all
of the elements from m; used. This is impossible, since p does not end in m.

Suppose there are ay empty blocks in ;. If a; = 0 then we are done, and we let 7 = 7.
If as > 0 then we take the elements n — a; — as + 1 through n — a; out of their blocks and
place them in the ay empty blocks in such a way that the sequence formed by their placement
is order isomorphic to the sequence created by the maxima of these blocks in my. Call this
new partition ms.

As before there can be no copies of p involving any of the last a; blocks of my. Thus,
the only possible copies of p could be in the first n — a; blocks of my, and such a copy must
involve at least one of the singleton blocks that was an empty block in 7;. Such a copy of p
cannot only involve these formerly empty blocks of 7; since this would imply a copy of p in
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mo. Thus, a copy of p must involve elements from an original block from 7; and some of the
formerly empty blocks.

Suppose such a copy exists, call it ¢ = oy05---0,,. Suppose that o;,0;,---0;, is the
subsequence of elements from the formerly empty blocks. Replace each of these entries in o by
the maxima of the corresponding blocks in my. Call this new permutation 7. Now, 7 is order
isomorphic to o since the sequence o;, 0, - - - 0, is order isomorphic to the sequence of maxima
of the corresponding blocks in 7y, and min{c;, : 1 < j <t} > max{o, :s ¢ {i;: 1 < j <t}}
Thus, 7 is a copy of p in my, which contradicts the fact that my avoids p.

Suppose we reach a partition 7; with a;,; empty blocks. We remove the largest a;,, that
are in blocks that have not been empty at any point during the construction. We fill the
empty blocks with these a;,1 elements by placing one in each block so that they are order
isomorphic to the maxima of the corresponding blocks in m;_;, thus forming ;.

We must show that m; .1 avoids p. Suppose o = o105+ 0, is a copy of p in m;,. We
know that none of the last a; blocks are involved. Form a permutation 7 = 77 - - - 73, from
o in the following way. If o; is in a block that has not yet been emptied then 7; = ;. If o; is
in a block that was empty in 7; then 7; is the maximum of the corresponding block in 7;_;.
Now, 7 is order isomorphic to ¢ by an argument similar to that for my. Thus, 7 is a copy of
p in 7.

Once we reach 7; with no empty blocks, we set 7; = 7. Such a 7; will always be obtained
since we assumed that n > k.

The final k letters of the word w are as follows. Let wy; = 0 if the #*" block of 7 has more
than one element. Let wy; = j if the i"® block has one element and that element was in the
5" block of my. The nature of w makes this process invertible and hence we have an injection.

Since [0, k]**| = (1 + k)?*, we have that Op;’z}f)(p) < op,x(p) where (k) = (14 k). O

An example will certainly help make the previous construction easier to understand.
Suppose that p = 132. We have that 7 = 8/0/359/12/0/46/7 € OPg ,(p). In the first step
we move the empty blocks to the end, and obtain my = 8/359/12/46/7/0/0. The first seven
letters of the word w are 1346700 since the last 2 blocks were empty, the second block in 7
was the third block in 7, etc.

Now, we remove 8 and 9 from 7y and use them to fill in the empty blocks at the end
by placing them in increasing order to obtain, m; = (0/35/12/46/7/8/9. The first block has
been emptied by removing the 8.

We remove 7 from its block in m; and place it in the empty block. Notice that since there
is only one element to place we do not need to worry about placing it in an order isomorphic
way. This gives us mg = 7/35/12/46/0/8/9. The fifth block has been emptied by removing
the 7.

We remove 6 from its block in 7wy and place it in the empty block obtaining w3 =
7/34/12/4/6/8/9. No blocks of 73 are empty, so we set 7 = m3. The last seven letters
of the word w are 5004412. The second and third of these last seven letters are zeros since
the second and third blocks of 7 have at least two elements each. The first letter is 5 since
7 was in the fifth block of 7 etc.

This gives us the pair (7/35/12/4/6/8/9, 13467005004412) € OPqg7(132) x [0, k]?*.

The proof of Theorem [I1] can be substantially simplified if the monotonicity conjecture
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2 is proved, since we would have that op*(n, k) < Z?Zl (];) op(n, j), where j indicates which
of the k£ blocks are to be non-empty; varying the positions of these yields all possibilities for
empty ordered blocks. Thus by monotonicity,

op*(n, k) < (2 = 1) max op(n, j) = (28 — Dop(n, k),

for n sufficiently large, which proves the first inequality in Theorem [l with ¢(k) = 28 — 1.

8 Future work/Open questions

Note added while preparing revised version: Several of the open questions raised in this
paper have recently been resolved in work of Chen et al (2013+) and Kasraoui (2013+). In
particular,

1. Conjectures 1 and 2 have been proved.

2. A closed form for op,, ,(p) was given in [12].

1/n

3. Kasraoui [I2] also gave a closed form for lim,_,o op, ,(p)'/", which depends on the

length of |p|.

One interesting question that remains open is the question of determining the limit
lim op,,(p) for any permutation pattern p.
n—oo
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