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Abstract

We study packing densities for set partitions, which is a generalization of packing

words. We use results from the literature about packing densities for permutations

and words to provide packing densities for set partitions. These results give us most

of the packing densities for partitions of the set {1, 2, 3}. In the final section we

determine the packing density of the set partition {{1, 3}, {2}}.
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1 Introduction

Pattern avoidance and containment in combinatorial objects have been studied since they
were introduced by Knuth [10]. The first systematic study of pattern avoidance in permu-
tations was done by Simion and Schmidt [13]. Burstein [3] introduced pattern avoidance
in words. Klazar [7, 8, 9] and Sagan [12] introduced the idea of pattern avoidance in
set partitions. In this paper we will explore the idea of packing patterns into set par-
titions. That is to say, instead of trying to avoid a particular pattern we will find set
partitions with the most copies of a pattern. We will use this information to describe
packing densities for different patterns.

The idea of packing permutations was first studied by Stromquist [14] in an unpub-
lished paper and carried on by Price [11] in his dissertation. Many people [1, 5, 6, 15, 16]
advanced the study of packing permutations, and Burstein, Hästö and Mansour [4] ex-
tended the concept of packing to words. This paper is the first attempt at packing set
partitions. We will see that this is closely related to packing words, and depending on
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the definition of pattern containment in set partitions, some of the results on words carry
over to this new context. We begin with some definitions.

Let [n] = {1, 2, . . . , n}. A partition π of [n] is a family of disjoint sets B1, B2, . . . , Bk

called blocks such that
⋃k

i=1 Bi = [n]. We write π = B1/B2/ . . . /Bk where

minB1 < minB2 < · · · < minBk.

For example π = 145/26/37 is a partition of the set [7]. Notice that π has three blocks.
Let Πn be the set of partitions of [n] and Πn,k be the set of partitions of [n] with at most
k blocks.

Let π = B1/B2/ . . . /Bk be a partition of [n]. We associate to π the word π1π2 · · · πn,
where πi = j if and only if i ∈ Bj. So the word associated to the partition 145/26/37 is
1231123.

Let [k]n be the set of words with n letters from the alphabet [k]. If w ∈ [k]n, we
may canonize w by replacing all occurrences of the first letter by 1, all occurrences of the
second occurring letter by 2, etc. For example the word w = 3471344574 has canonical
form 1234122532. The set Πn and the set of all canonized words of length n are in obvious
bijection with each other.

Let u = u1u2 · · · un and w = w1w2 · · ·wn be words. We say that u and w are order
isomorphic if ui = uj respectively ui < uj if and only if wi = wj respectively wi < wj for
any 1 ≤ i 6= j ≤ n.

For the duration of this paper we will discuss set partitions in the form of canonized
words. We say that a partition σ = σ1σ2 · · · σn of [n] contains a copy of partition π =
π1π2 · · · πk of [k] in the restricted sense if there is a subsequence σ′ = σi1σi2 · · · σik such
that such that σ′ and π are order isomorphic. We say that a partition σ = σ1σ2 · · · σn of
[n] contains a copy of partition π = π1π2 · · · πk of [k] in the unrestricted sense if there is
a subsequence σ′ = σi1σi2 · · · σik such that the canonization of σ′ is π. If a partition σ
does not contain a copy of π in the (un)restricted sense then we say that σ avoids π in
the (un)restricted sense.

For example the partition 1213221 contains many copies of 121. Positions two, four
and five give the subsequence 232 which is a copy of 121 in the restricted sense and the
unrestricted sense. Positions two, three and five give the subsequence 212 which is only a
copy in the unrestricted sense. Furthermore, this partition avoids 1112 in the restricted
sense, but not the unrestricted sense, since the sequence 2221 canonizes to 1112.

Let S ⊂ Πm and let νr(S, π) (respectively ν(S, π)) be the number of copies of partitions
from S in π in the restricted (respectively unrestricted) sense. Let

µr(S, n, k) = max{νr(S, π) : π ∈ Πn,k},

and
µ(S, n, k) = max{ν(S, π) : π ∈ Πn,k}.

The probability of a randomly chosen subsequence of a partition π to be a partition from
S in the restricted sense is

dr(S, π) =
νr(S, π)
(
n
m

)
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and in the unrestricted sense is

d(S, π) =
ν(S, π)
(
n
m

) .

The maximum probability is

δr(S, n, k) =
µr(S, n, k)
(
n
m

)

and

δ(S, n, k) =
µ(S, n, k)
(
n
m

) ,

respectively.
The restricted sense of pattern containment in set partitions is the traditional defini-

tion. It is most closely related to the definition of pattern containment in permutations
as defined by Knuth [10]. As such, when Burstein [3] took on the study of pattern con-
tainment and avoidance in words, he defined pattern containment in words as follows. A
word w = w1w2 . . . wn ∈ [ℓ]n contains a word u = u1u2 . . . um ∈ [k]m if there is a subword
w′ = wi1wi2 . . . wim that is order isomorphic to u. Otherwise we say that w avoids u.
This is exactly the restricted containment definition for set partitions. We simply focus
on canonized words.

For a set of patterns S ⊂ [k]n, Burstein, Hästö, and Mansour [4] define ν̂(S, σ) to be
the number of occurrences of patterns from S in σ, and

µ̂(S, n, k) = max{ν̂(S, σ) : σ ∈ [k]n},

d̂(S, σ) =
ν̂(S, σ)
(
n
m

) ,

and

δ̂(S, n, k) =
µ̂(S, n, k)
(
n
m

) = max{d̂(S, σ) : σ ∈ [k]n}.

Proposition 1.1. For a set S ⊂ Πm of set partition patterns, we have

δr(S, n, k) = δ̂(S, n, k).

Proof. Let S ⊂ Πm. It suffices to show that µr(S, n, k) = µ̂(S, n, k). Since Πn,k ⊂ [k]n we
have that µr(S, n, k) ≤ µ̂(S, n, k). We need only show the opposite inequality.

Let σ ∈ [k]n satisfy ν̂(S, σ) = µ̂(S, n, k). Rewrite σ using the smallest alphabet
possible by replacing the smallest element by 1, the next smallest by 2, etc. Call this new
word σ̃. Let σ̃ = σ1σ2 · · · σn. If σ̃ ∈ Πn,k then we are done.

If σ̃ 6∈ Πn,k then suppose that i ∈ [n] is the first position such that σ1 · · · σi−1 ∈ Πi−1,k

and σi > max{σj : 1 ≤ j ≤ i − 1} + 1. If σ1 6= 1 then in the following argument let
i = 1 and set max{σj : 1 ≤ j ≤ i− 1} = 0. Let t ∈ [n] be the smallest element such that
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σt = max{σj : 1 ≤ j ≤ i− 1}+1. Any copy of an element from S that involves σt cannot
involve any of the elements σi, σi+1, . . . , σt−1. So we do not lose any copies of elements
from S if we move the element σt into the ith position. Now, the word σ1 · · · σi−1σt ∈ Πi,k.
By induction we can find a word σ̄ ∈ Πn,k such that ν(S, σ̄) = µ̂(S, n, k).

Thus, µr(S, n, k) ≥ µ̂(S, n, k), and hence µr(S, n, k) = µ̂(S, n, k).

We are interested in the asymptotic behavior of δr(S, n, k) and δ(S, n, k) as n → ∞
and k → ∞. By work done by Burstein, Hästö and Mansour [4] for S ⊂ Πm we have
that δr(S, n, k) ≤ δr(S, n− 1, k) and δr(S, n, k) ≥ δr(S, n, k − 1). They show further that
limn→∞ limk→∞ δr(S, n, k) and limk→∞ limn→∞ δr(S, n, k) exist. Let’s define these limits
to be δr(S) and δ′r(S) respectively. We will give a similar result for unrestricted patterns.

Proposition 1.2. Let S ⊂ Πm, then for n > m we have δ(S, n − 1, k) ≥ δ(S, n, k),
δ(S, n, k) ≥ δ(S, n, k − 1).

Proof. The inequality δ(S, n− 1, k) ≥ δ(S, n, k) follows from the proof of Proposition 1.1
in [1]. The repetition of letters is irrelevant, and we can simply canonize the resulting
partition.

We have that δ(S, n, k) ≥ δ(S, n, k − 1), since allowing for more blocks only increases
the number of possible patterns.

Notice that a partition of [n] can have at most n blocks, so limk→∞ δ(S, n, k) =
δ(S, n, n). Furthermore, we have that δ(S, n, n) = δ(S, n, n + 1) ≥ δ(S, n + 1, n + 1).
Thus, {δ(S, n, n)} is nonnegative and decreasing and hence

δ(S) = lim
n→∞

lim
k→∞

δ(S, n, k)

exists. We call δ(S) the packing density of S.
Of course we could take the limits in the opposite order. That is consider the double

limit limk→∞ limn→∞ δ(S, n, k). Since δ(S, n, k) is decreasing in n and nonnegative, we
have that limn→∞ δ(S, n, k) exists. Now, limn→∞ δ(S, n, k) is increasing in k and bounded
above by 1, thus we may define

δ′(S) = lim
k→∞

lim
n→∞

δ(S, n, k).

An important question is whether δ′(S) = δ(S). Burstein, Hästö, and Mansour [4]
conjectured that δr(S) = δ′r(S) and Barton [2] proved it. It turns out that Barton’s proof
works for the unrestricted case as well.

Lemma 1.3 (Barton). Let S be a collection of patterns of length m and σ ∈ [n]n be an
S-maximizer. Then (

n

m

)

δr(S) ≤ νr(S, σ) ≤
nm

m!
δ′r(S).
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Proof. We know that δr(S, n, n) ≥ δr(S), so there is some σ ∈ [n]n satisfying dr(S, σ) ≥
δr(S), so νr(S, σ) =

(
n
m

)
dr(S, σ) ≥

(
n
m

)
δr(S). This gives the left-hand inequality.

To show the right-hand inequality we will show that given any σ ∈ [n]n we have that
νr(S, σ) ≤ nm

m!
δ′r(S). For t ≥ 1, form the word σt ∈ [n]tn by repeating each letter of σ t

times. Now, every occurrence of a pattern π ∈ S gives rise to tm occurrences of π in σt,
so νr(S, σt) ≥ tmνr(S, σ). Thus,

δr(S, n) = lim
t→∞

δr(S, n, tn) ≥ lim
t→∞

dr(S, σt) ≥ lim
t→∞

tmνr(S, σ)
(
tn
m

) =
m!

nm
νr(S, σ).

Now, δ′r(S) ≥ δr(S, n), so the right hand inequality is proved.

The argument in Barton’s proof holds whether we restrict the types of copies in a
word or not. Also, the construction of σt from σ will maintain the canonical form of the
word. So we could delete the subscript r everywhere in the previous proof and lemma
and have the same result.

Lemma 1.4. Let S be a collection of patterns of length m and σ ∈ [n]n be an S-maximizer.
Then (

n

m

)

δ(S) ≤ ν(S, σ) ≤ nm

m!
δ′(S).

Theorem 1.5. Let S ⊂ Πm. Then δ(S) = δ′(S).

Proof. We know from above that δ(S, k, k) ≥ δ(S, k) for k ≥ m, so we have that

δ(S) = lim
k→∞

δ(S, k, k) ≥ lim
k→∞

δ(S, k) = δ′(S).

On the other hand, using Lemma 1.4 we have that
(
n
m

)
δ(S) ≤ nm

m!
δ′(S), so letting n

approach infinity gives us that δ(S) ≤ δ′(S).

Our main focus will be to determine δ(S) where S ⊂ Π3 = {111, 112, 121, 122, 123}
and |S| = 1. The patterns 112 and 122 are equivalent in the unrestricted sense because
if σ = σ1σ2 · · · σn contains m copies of 112 then the partition obtained by canonizing
σ′ = σnσn−1 · · · σ1 contains m copies of 122. Thus, we only need to determine the packing
densities of each of the patterns 111, 112, 121 and 123.

In the next section we will use previous results on words to answer questions about
δr(S) for certain sets S ⊂ Π3. In Section 3 we will discuss some of the subtle differences
between restricted and unrestricted copies and determine values of δ(S) for certain sets
S ⊂ Π3. In Section 4 we will tackle the remaining partition of Π3, the so called unlayered
partition. We will conclude by suggesting open problems.
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2 Packing in the Restricted Sense

By Proposition 1.1, we have that δr(S, n, k) = δ̂(S, n, k). This implies that the packing
densities in the restricted sense are the same as the packing densities determined by
Burstein, Hästö and Mansour [4]. We give their results here. We give proofs for the first
two and refer the reader to their paper for the remaining proofs.

Consider the partition, βm of [m] where every element is in the same block. That is
βm is a string of m 1’s. In this case a copy of cm in a partition σ is any constant sequence
of length m. Clearly, dr(βm, βn) = 1 for n ≥ m, and hence δr(βm) = 1 for any m ≥ 1.

Now consider the opposite extreme γm = 12 · · ·m, i.e. the partition with every element
in its own block. Any copy of γm is a strictly increasing sequence of length m. Clearly,
dr(γm, γn) = 1 for n ≥ m, and hence δr(γm) = 1 for m ≥ 1.

The packing densities in the restricted sense for the partitions of [3] are given in the
table below.

Partition π 111 112 121 123

Packing Density δr(π) 1 2
√
3− 3 2

√
3−3
2

1

3 Packing in the Unrestricted Sense

As we mentioned before, our goal is to determine the packing densities of the partitions
of [3]. The packing densities of 112 and 122 are equivalent, so we need only consider the
packing densities of 111, 112, 121, and 123. The arguments that δr(111) = δr(123) = 1
also show that δ(111) = δ(123) = 1. The pattern 112 is a layered partition, which we
will define below. The partition 121 is not layered, and in fact is the smallest nonlayered
partition. We will determine the packing density of 121 in Section 4. We now turn our
attention to layered partitions in order to deal with 112.

Let π be a partition of [n]. We say that π is layered if π = 11 · · · 122 · · · 2 · · · kk · · · k,
where k ∈ N. Let π be a partition of [n]. The number of elements in the ith block, Bi,
is the number of occurrences of i in π. We will say that π is monotone layered if π is
layered and |B1| ≤ |B2| ≤ · · · ≤ |Bk| or |B1| ≥ |B2| ≥ · · · ≥ |Bk|. For example, 1112223
is monotone layered, but 111233 is layered but not monotone, and 122113 is monotone
but not layered.

Let π be a partition of [n]. We say the block structure of π is the multiset of block sizes
of π. For example the block structure of π = 1121222333 is {3, 3, 4}, so while monotonicity
cares about the order of the sizes of the blocks, the specific block structure does not.

Lemma 3.1. Let π = 11 · · · 122 · · · 2 ∈ Πm be a monotone increasing layered partition.
For each σ ∈ Πn,2, let σ̃ ∈ Πn,2 be the unique monotone increasing layered partition with
the same block structure as σ. We have that ν(π, σ̃) ≥ ν(π, σ).

Proof. Let π be as described above and consider any partition σ ∈ Πn,2. If σ has only
one block then it is already layered and we are done.
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Suppose that σ has two blocks, one of size b1 and the other of size b2, and suppose
b2 ≥ b1. Without loss of generality suppose that there are b1 ones and b2 twos. Suppose
the pattern π has a1 ones and a2 twos. We have two cases. If a1 = a2 then the maximal
number of copies of π in σ is 2

(
b1
a1

)(
b2
a2

)
. This comes from the fact that given any a1 of the

ones in σ there are at most 2
(
b2
a2

)
copies of π involving these a1 ones. This maximum is

achieved by the partition with b1 ones followed by b2 twos.
Now, suppose that a1 < a2. If n = m then the partition with the most copies of π

and the same block structure as σ is π itself which contains one copy. Any others contain
zero copies.

Now, suppose that n > m. We induct on n. Remove the last letter from σ and call
this new partition σ′. By induction there is a monotone increasing layered partition with
the same block structure as σ′ that has at least as many copies of π as σ′. Now replace
the last letter, and adjust so that the block structure of this new partition is the same as
the original block structure of σ. Call this new partition σ̃.

We know that the number of copies of π in σ̃ that do not include the last letter is at
least as many as the number of copies of π in σ that do not include the last letter.

We turn our attention to the number of copies of π that do include the last letter.
Either the last letter in σ was a 1 or a 2. In σ̃ the last letter is a 2.

Suppose that there are a1 1’s in π and a2 2’s in π. Suppose there are b1 1’s in σ and b2
2’s in σ, and without loss of generality, assume that b2 ≥ b1. There are

(
b1
a1

)(
b2−1
a2−1

)
copies

of π in σ̃ that include the last letter of σ̃. If the last letter in σ was a 2 then there were
at most

(
b1
a1

)(
b2−1
a2−1

)
copies of π involving n in σ, which is the same as the number of such

copies in σ̃. If the last letter in σ was a 1 then there were at most
(
b1−1
a2−1

)(
b2
a1

)
copies of π

in σ that involve the last letter, which is no more than the number of such copies of π in
σ̃. That is to say,

(
b1−1
a2−1

)(
b2
a1

)
≤
(
b1
a1

)(
b2−1
a2−1

)
. The preceding inequality is inductively true,

assuming that a1 < a2.

Theorem 3.2. Let π be a layered monotone increasing partition with exactly k blocks. For
each σ ∈ Πn, the layered monotone increasing partition, σ̃, with the same block structure
as σ satisfies ν(π, σ̃) ≥ ν(π, σ).

Proof. Let π be as described above, and assume that π has exactly k blocks. Let σ ∈ Πn,
and assume that σ has exactly ℓ blocks.

Remove the last letter from σ, and call this new partition σ′. By induction the layered
monotone increasing partition σ̃′ with the same block structure as σ′ contains at least as
many copies of π as σ′.

Now, replace the last letter and adjust so that the new partition, σ̃, has the same
block structure as σ. By the previous paragraph, we know that the number of copies of
π in σ̃ that do not involve the last letter is at least as many as the number of copies of π
in σ that do not involve the last letter.

We turn our attention to the number of copies that do involve the last letter. Let
ν(π, σ, n) be the number of copies of π in σ involving the last letter of σ. Assume that
the last letter in σ is j. Any copy of π in σ that involves the last letter, must have the
k’s in π corresponding to the j’s in σ. Thus, we will not lose any copies of π that involve
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the last letter by moving all of the j’s to the end of σ. For ease of explanation, we will
not canonize this new partition, and we will continue to call it σ.

Let σ̄ be the partition consisting of all but the j’s in σ, and let π̄ be the partition
consisting of the first k−1 blocks of π. By induction on the number of blocks the number of
copies of π̄ in the layered monotone increasing partition, ˜̄σ, with the same block structure
as σ̄ is at least as many as the number of copies of π̄ in σ̄. Note that we can obtain ˜̄σ by
moving elements around and canonizing using the elements [1, j − 1] ∪ [j + 1, ℓ].

Replace the first ℓ − 1 blocks of σ by ˜̄σ, and call this new partition σ̂. We have that
σ̂ must be layered, but may or may not be monotone increasing. Suppose that there are
bj j’s in σ and assume there are bℓ ℓ’s in σ̃. If bj = bℓ then we are done. If bj < bℓ, then
by Lemma 3.1 we have ν(π, σ̂, n) ≤ ν(π, σ̃, n). By construction ν(π, σ, n) ≤ ν(π, σ̂, n).

Thus, we have not reduced the number of copies of π by replacing σ by σ̃.

Theorem 3.2 tells us that if π is layered, monotone increasing, then if we want to
know µ(π, n, k) we need only look at layered monotone increasing σ ∈ Πn,k. Of course
everything we did in Lemma 3.1 and Theorem 3.2 can be done for layered monotone
decreasing partitions. This coincides with results of Burstein, Hästö, and Mansour [4]
on words and Price [11], Albert, Atkinson, Handley, Holton, and Stromquist [1] and
Barton [2] on permutations.

Let a nondecreasing layered word be a word of the form 11 · · · 122 · · · 2 · · · kk · · · k, as
defined in [4]. These are identical to layered partitions. Furthermore, if π and σ are
layered monotone increasing (decreasing) partitions then ν(π, σ) = νr(π, σ). Thus, we
can use the results of [1, 2, 4] to determine δ(π) where π is a layered monotone increasing
(decreasing) partition.

The results of Price [11] give us that δ(112) = 2
√
3 − 3, δ(1122) = 3/8. For k ≥ 2,

δ(1 · · · 1
︸ ︷︷ ︸

k

2) = kα(1−α)k−1, where 0 < α < 1 and kαk+1 − (k+1)α+1 = 0. Furthermore,

for a, b ≥ 2,

δ(1 · · · 1
︸ ︷︷ ︸

a

2 · · · 2
︸ ︷︷ ︸

b

) =

(
a+ b

a

)
aabb

(a+ b)a+b
.

The results of Albert et al. [1] give us that δ(1123) = δ(1233) = 3/8.

4 Packing 121

In order to complete the determination of the packing densities of the partitions of [3]
we need to address the pattern 121. We will prove that the partition of [n] consisting of
alternating 1’s and 2’s, i.e. 121212 · · · 12 is the maximizer.

Lemma 4.1. Let π ∈ Πn,2 have exactly two blocks. Assume that of the first a+b elements
a are 1’s and b are 2’s, and of the last c + d elements c are 1’s and d are 2’s, where
n = a + b + c + d + 2. If the a + b + 1st element is a 2 and the a + b + 2nd element is a
1 then switching the order of these two elements changes the number of copies of 121 by
(b+ c)− (a+ d).
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Proof. We have partition π =
︸ ︷︷ ︸

a 1′s, b 2′s

21
︸ ︷︷ ︸

c 1′s, d 2′s

. By switching the 1 and

2 in positions a+ b+ 1 and a+ b+ 2, we obtain π̂ =
︸ ︷︷ ︸

a 1′s, b 2′s

12
︸ ︷︷ ︸

c 1′s, d 2′s

.

The only copies of 121 that are lost or created are copies that involve both of these
positions. Thus, we lose a copies of the form 121 and d copies of the form 212. We create
b copies of the form 212 and c copies of the form 121. This gives us a net change of
(b+ c)− (a+ d) copies.

Lemma 4.2. Let π ∈ Πn,2 have exactly two blocks. Assume that π consists of i 1’s and
j 2’s with i ≥ j. Then the partition

π̂ = 11 · · · 1
︸ ︷︷ ︸

⌈(i−j−1)/2⌉

1212 · · · 121
︸ ︷︷ ︸

2j+1

11 · · · 1
︸ ︷︷ ︸

⌊(i−j−1)/2⌋

satisfies ν(121, π̂) ≥ ν(121, π).

Proof. We begin by showing that the middle section of π̂ must have this alternating
format. Suppose in π there is a string of ℓ + 2 elements with ℓ ≥ 2 where the first and
last elements are 2’s and the remaining ℓ elements are 1’s. Now suppose that preceding
the first 2 are a 1’s and b 2’s and succeeding the last 2 are c 1’s and d 2’s. If we swap
the 2 immediately preceding this run of ℓ 1’s with the first 1 in the run , we will have a
change of (b+ c+ ℓ)− (a+ d+2) copies of 121. Swapping the last 1 in the run with the 2
immediately following it gives us a change of (a+ d+ ℓ)− (b+ c+2) copies of 121. Since
ℓ ≥ 2, at least one of these must be nonnegative, so we can perform one of these swaps
without decreasing the number of copies of 121. A similar argument holds if we replace
the 2’s by 1’s and vice versa. This gives us that we must have alternating 1’s and 2’s in
the middle of π̂.

We turn our attention to the number of 1’s that precede and succeed this alternating
run. Suppose that the alternating section is as described in the statement of the lemma
and is preceded by a 1’s and succeeded by b 1’s. The number of copies of 121 that involve
these outside 1’s is given by

(
j
∑

k=1

ka

)

+

(
j
∑

k=1

kb

)

+ abj.

The first sum gives the number of copies of 121 involving the one of the first a 1’s and
a pair from the alternating section. The second sum gives the number of copies of 121
involving one of the last b 1’s and a pair from the alternating section. The last term is
the number of copies of 121 using a 1 from the first a and a 1 from the last b and a 2
from the alternating section. This expression simplifies to a

(
j+1
2

)
+ b
(
j+1
2

)
+ abj which is

maximized when a = b.

These first two lemmas tell us that if σ ∈ Πn,2 then among all partitions with the
same block structure as σ the one with the structure described in Lemma 4.2 has the
most copies of 121. Furthermore, among those with the structure described in Lemma
4.2, the one that consists entirely of an alternating section has the most copies of 121.
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Lemma 4.3. Suppose that π ∈ Πn has structure described in Lemma 4.2 with a 1’s at the
beginning, an alternating section involving j 2’s and j + 1 1’s, and a or a − 1 1’s at the
end. (If a = 0 and n is even then we allow the alternating section to end in a 2.) Then
the number of copies of 121 is maximized when a = 0.

Proof. We begin with a partition π that has the structure described above, and we assume
that a ≥ 1. Since a ≥ 1 there is at least one extra 1 at the beginning and at least zero extra
1’s at the end. Assume that there are a 1’s at the beginning and the end. By changing
the last of the string of a 1’s at the beginning to a 2 and the first of the string of a 1’s at
the end to a 2 we lose 2ja−j+2

(
j+1
2

)
copies of 121 and gain 2(a−1)(j+a)+

(
j+1
2

)
+
(
j+2
2

)

copies of 121. The net gain is a2 + (a− 1)2 copies of 121.
In the case where π begins with a 1’s, ends in (a− 1) 1’s and a ≥ 2, switching the last

1 in the first run to a 2 and the first 1 in the last run to a 2 gives a net gain of 2(a− 1)2

copies of 121.
Finally, in the case where a = 1 and the last run of 1’s consists of zero 1’s we have two

cases: either the alternating section ends in 1 or 2. In this case we turn the first 1 into a
2. If the alternating section ends in 1 then there is no net gain or loss of copies of 121. If
the alternating section ends in 2 there is a net gain of j copies of 121. In either of these
cases we canonize after changing the 1 to a 2, to change the new word into a partition.

Thus, the number of copies of 121 in this case is maximized when a = 0.

Lemma 4.3 tells us that ν(121, π) for π ∈ Πn,2 is maximized when π is the partition
consisting of alternating 1’s and 2’s. We will now show that among partitions with any
number of blocks the number of copies of 121 is maximized by the partition consisting
of alternating 1’s and 2’s. We call the alternating partition of length n αn. Notice that
ν(121, αn) =

1
24
(n3 − n) if n is odd and ν(121, αn) =

1
24
(n3 − 4n) if n is even.

First of all suppose that σ has k > 2 blocks. Since a copy of 121 involves only two
blocks at a time, then we know that the partition σ̂ with same block structure as σ
arranged in such a way that any two blocks have the structure described in Lemma 4.2
has at least as many copies of 121 as σ.

Theorem 4.4. For any partition π ∈ Πn, ν(121, π) ≤ ν(121, αn).

Proof. Let g(n) =

{
1
24
(n3 − n) n odd,

1
24
(n3 − 4n) n even.

We know that g(n) is the best we can do with

at most two blocks in the partition and that this is achieved by αn.
Suppose that σ ∈ Πn,3 and has exactly three blocks. Suppose that there are a 1’s, b

2’s and n − a − b 3’s in the partition σ. We know that among partitions with the same
block structure as σ the one with each pair of blocks arranged as in Lemma 4.2 has the
most copies of 121. Assume that σ is arranged in this way.

Now, the number of copies of 121 involving just the 1’s and 2’s in this partition is at
most g(a+ b). Similarly using the other two pairs of blocks we have at most g(n− a) and
g(n− b) copies of 121. This tells us that the number of copies 121 in this arrangement is
bounded by g(a+b)+g(n−a)+g(n−b). This expression is maximized when a = b = n/3.
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Thus, the number of copies of 121 is bounded above by 3g(2n/3) ≤ n3

27
− n

12
, which is clearly

less than g(n).
In general assume that σ ∈ Πn,k has exactly k blocks. Again any two blocks in

σ when compared to each other must have the arrangement outlined in Lemma 4.2.
By the same argument above the number of copies of 121 in σ is bounded above by
(
k
2

)
g(2n/k) ≤ n3

24k
− n3

24k2
− n(k−1)

24
, which is again less than g(n).

Thus, ν(121, αn) = µ(121, n, n).

Theorem 4.4 tells us that δ(121, n, n) = g(n)

(n
3
)
, and thus δ(121) = limn→∞

g(n)

(n
3
)

= 1
4
.

Notice that this is the first place in which packing densities for set partitions differ from
packing densities for words. It is not a dramatic increase in density, but the unrestricted
packing density for 121 is greater than the restricted density for 121 as expected. This
gives us the following results for partitions of [3].

Partition π 111 112 121 123

Packing Density δ(π) 1 2
√
3− 3 1/4 1

One challenge that the authors found was proving a general result for packing layered
set partitions. For permutations and words it was proved that given a layered permutation
pattern or a layered word pattern the object that maximized the number of copies of
this pattern was also layered. Such a proof for set partitions has proved elusive, and is
desirable.
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