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Abstract

We consider the set partition statistics ls and rb introduced by Wachs and White and
investigate their distribution over set partitions avoiding certain patterns. In particular,
we consider those set partitions avoiding the pattern 13/2, Πn(13/2), and those avoiding
both 13/2 and 123, Πn(13/2, 123). We show that the distribution over Πn(13/2) enumer-
ates certain integer partitions, and the distribution over Πn(13/2, 123) gives q-Fibonacci
numbers. These q-Fibonacci numbers are closely related to q-Fibonacci numbers studied
by Carlitz and by Cigler. We provide combinatorial proofs that these q-Fibonacci numbers
satisfy q-analogues of many Fibonacci identities. Finally, we indicate how p, q-Fibonacci
numbers arising from the bistatistic (ls, rb) give rise to p, q-analogues of identities.

1 Introduction and Preliminary Results

Define the Fibonacci numbers Fn as satisfying the initial conditions F0 = 1, F1 = 1, and the
recursion Fn = Fn−1 + Fn−2 for n ≥ 2. This paper focuses on q-Fibonacci numbers which arise
naturally from the study of set partition statistics on pattern restricted partitions. Wachs and
White [19] introduced the statistics we will use and showed how that could be used to define
q-Stirling numbers of the second kind. In [16], Simion studied the distribution of these statistics
over non-crossing partitions (those avoiding 13/24) to get q-analogues of the Catalan numbers.
Further work on this subject was done by Wachs in [20] and by White in [23]

The q-Fibonacci numbers studied here are closely related to the q-Fibonacci numbers studied
by Carlitz [4, 5] and Cigler [6, 7, 8, 9]. In this section we provide the necessary definitions and
background for understanding pattern restricted set partitions and the two statistics. Section 2

∗This work was partially done while the author was visiting DIMACS.
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contains an exploration of a familiar q-analogue of 2n and its relationship to integer partitions.
In Section 3 we define the q-Fibonacci numbers arising from set partition statistics, introduce
the q-Fibonacci numbers of Carlitz and Cigler, and explore their relationships. The next two
sections are devoted to showing that known Fibonacci identities and their bijective proofs easily
lead to bijective proofs of q-analogues of these identities. Finally, p, q-analogues of Fibonacci
identities are discussed in the last section.

Let [n] = {1, 2, . . . , n} and [k, n] = {k, k + 1, . . . , n}. A partition π of [n], written π ⊢ [n], is
a family of nonempty, disjoint subsets B1, B2, . . . , Bk of [n], called blocks, such that

⋃k
i=1 Bi =

[n]. If π has k blocks then we say that the length of π is k, written l(π) = k. We write
π = B1/B2/ . . . /Bk, omitting set braces and commas, and where we always list the blocks in the
standard order

min B1 < min B2 < . . . < min Bk.

Suppose π = A1/A2/ . . . /Ak ⊢ [m] and σ = B1/B2/ . . . /Bl ⊢ [n]. We say π is contained in
σ, written π ⊆ σ, if there are k distinct blocks Bi1 , Bi2 , . . . , Bik of σ such that Aj ⊆ Bij . For
example, if σ = 137/25/4/6 then π = 25/3 is contained in σ, but π′ = 2/5/6 is not because the
2 and the 5 would have to be contained in separate blocks of σ.

Given a set of integers S with cardinality #S = n, define the standardization map
StS : S → [n] to be the unique order preserving bijection between these sets. For example
if S = {3, 5, 10} then StS : S → [3] and StS(3) = 1, StS(5) = 2, and StS(10) = 3. We drop the
subscript S when this will cause no confusion. We let St act element-wise on set partitions.

Let π ⊢ [m] and σ ⊢ [n]. We say σ contains the pattern π if there is a partition π′ such that
π′ ⊆ σ and St(π′) = π, otherwise we say that σ avoids π. A copy of π = 12/3 in σ = 137/25/4/6
is 25/6. The partition 12/34 is not contained in σ since the only two blocks with more than one
element are {1, 3, 7} and {2, 5}, and the latter block can not act as either of the two smallest or
two largest elements of 12/34.

Define
Πn = {π ⊢ [n]},

Π =
⋃

n≥0

Πn,

and for any set of partitions P ⊆ Π,

Πn(P ) = {π ⊢ [n] : π avoids every partition in P}.

A layered partition is a partition of the form π = [1, i]/[i+1, j]/ . . . /[k+1, n], and a matching
is a partition B1/B2/ . . . /Bk where #Bi ≤ 2 for all i. For example 123/4567/8/9 is a layered
partition and 12/34/5/67/8 is a layered matching.

In [13] Sagan characterized Πn(π) for all π ⊢ [3]. In particular, he showed that Πn(123) is the
set of matchings of [n] and that Πn(13/2) is the set of layered partitions of [n]. It’s not hard to
see that #Πn(13/2) = 2n−1. Goyt [11] determined Πn(P ) for all sets P of partitions of [3]. He
noted that Πn(13/2, 123) is the set of layered matchings of [n], from which it follows easily that
#Πn(13/2, 123) = Fn.
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We are interested in the distributions of set partition statistics on Πn(13/2) and Πn(13/2, 123)
and the resulting q-analogues of 2n and Fn. Of the known set partition statistics, only the left
smaller, ls, and right bigger, rb, statistics of Wachs and White [19] seem to give interesting
distributions. We now describe these statistics.

Let π = B1/B2/ . . . /Bk be a partition and b ∈ Bi, then we will say that (b, Bj) is a left
smaller pair of π if j < i and min Bj < b. So, because of standard ordering, for a given block
Bj , the elements in left smaller pairs with Bj are exactly those in Bj+1, . . . , Bk. We will say that
(b, Bj) is a right bigger pair of σ if j > i and maxBj > b. Define ls(π) to be the number of left
smaller pairs of π and rb(π) to be the number of right bigger pairs of π. Wachs and White proved
that ls and rb are equidistributed over Πn. turns out that ls and rb are also equidistributed over
Πn(13/2) and Πn(13/2, 123).

Theorem 1.1 For any n,
∑

π∈Πn(13/2)

qls(π) =
∑

π∈Πn(13/2)

qrb(π),

and
∑

π∈Πn(13/2,123)

qls(π) =
∑

π∈Πn(13/2,123)

qrb(π).

Proof: Given a set partition π = B1/B2/ . . . /Bk ∈ Πn(13/2), let the complement of π be
the partition πc = Bc

k/ . . . /Bc
2/B

c
1, where Bc

i = {n − b + 1 : b ∈ Bi}. Notice that taking the
complement reverses the order of the blocks since π is layered. Clearly complementation is an
involution, and so bijective. To prove the first equality it suffices to show that it exchanges ls
and rb. This follows easily because the block order is reversed and minima are exchanged with
maxima. Also, complementation does not alter the block sizes and so restricts to a map on
Πn(13/2, 123). �

2 Distribution over Πn(13/2)

Define
An(q) =

∑

π∈Πn(13/2)

qrb(π).

It will be useful to think of the rb statistic in the following way. Consider a block Bj. Let
π = B1/B2/ . . . /Bk be a partition. For each element b ∈ Bi with i < j and b < max Bj , we have
that (b, Bj) is a right bigger pair. The number of right bigger pairs of the form (b, Bj) will be
the contribution of Bj to rb. When restricted to layered partitions, the contribution of Bj is

∑

i<j

#Bi = min Bj − 1.

The generating function An(q) is closely related to integer partitions. A partition
λ = (λ1, λ2, . . . , λk) of the integer d is a weakly decreasing sequence of positive integers such
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that
∑k

i=1 λi = d; the λi are called parts. We let |λ| =
∑k

i=1 λi. Denote by Dn−1 the set of
integer partitions with distinct parts of size at most n − 1. It is well known that

∑

λ∈Dn−1

q|λ| =

n−1
∏

i=1

(1 + qi).

For the rest of this chapter we will refer to a set partition as just a partition and an integer
partition by its full name.

For the following proof, it will be more convenient for us to list the parts of an integer partition
in weakly increasing order. Let φ : Πn(13/2) → Dn−1 be the map defined by

φ(B1/B2/ . . . /Bk) = (λ1, λ2, . . . , λk−1),

where λj =
∑j

i=1 #Bi.

Theorem 2.1 The map φ is a bijection, and for π ∈ Πn(13/2), rb(π) = |φ(π)|. Hence,

An(q) =
n−1
∏

i=1

(1 + qi).

Proof: Given λ = (λ1, λ2, . . . , λk−1) consider, for 1 ≤ j ≤ k, the differences dj = λj − λj−1,
where λ0 = 0 and λk = n. If λ ∈ Dn−1 then we have dj > 0 for all j. And if φ(π) = λ then
the dj give the block sizes of π. So a given λ determines a unique sequence of block sizes, and
this sequence determines a unique layered π. Thus, φ is bijective. Since λj =

∑

i≤j #Bi is the
contribution of Bj+1 to rb (and B1 makes no contribution) we have rb(π) = |φ(π)| as desired. �

3 q-Fibonacci Numbers Past and Present

We turn our focus to the distribution of rb over Πn(13/2, 123). As remarked in the introduction,

#Πn(13/2, 123) = Fn.

The distribution of rb over Πn(13/2, 123) gives a nice q-analogue of the Fibonacci numbers. Let

Fn(q) =
∑

π∈Πn(13/2,123)

qrb(π).

Proposition 3.1 The generating function Fn(q) satisfies the boundary conditions F0(q) = 1,
F1(q) = 1, and the recursion

Fn(q) = qn−1Fn−1(q) + qn−2Fn−2(q).
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Proof: Let π ∈ Πn(13/2, 123). Since π is a matching it must end in a block of size one or
of size two. If π ends in a singleton then the singleton is {n}, which contributes n − 1 to rb,
and the remaining elements form a partition in Πn−1(13/2, 123). Similarly the doubleton case is
counted by the second term on the right-hand side of the recursion. �

We now introduce the q-Fibonacci numbers of Carlitz and Cigler and explore their relationship
to the q-Fibonacci numbers as defined above. Let BSn be the set of binary sequences β = b1 . . . bn

of length n without consecutive ones. It is well known that #BSn = Fn+1. In [4, 5], Carlitz
defined and studied a statistic on BSn as follows. Let ρ : BSn → N be given by

ρ(β) = ρ(b1 . . . bn) = b1 + 2b2 + . . . + nbn,

and define
F K

n (q) =
∑

β∈BSn−1

qρ(β).

Carlitz showed that F K
n (q) satisfies F K

0 (q) = 1, F K
1 (q) = 1, and

F K
n (q) = F K

n−1(q) + qn−1F K
n−2(q).

Cigler [7] defined his q-Fibonacci polynomials using Morse sequences. A Morse sequence of
length n is a sequence of dots and dashes, where each dot has length 1 and each dash has length
2. For example, ν = • • − − •− is a Morse sequence of length 9. Let MSn be the set of Morse
sequences of length n. Each Morse sequence corresponds to a layered matching where a dot is
replaced by a singleton block and a dash by a doubleton. So, #MSn = Fn.

Define the weight of a dot to be x and the weight of a dash to be yqa+1 where a is the length
of the portion of the sequence appearing before the dash. Also, define a weight on the Morse
sequences, w : MSn → Z[x, y, q], by letting w(ν) be the product of the weights of its dots and
dashes. For example, the sequence above has weight (x)(x)(yq3)(yq5)x(yq8) = x3y3q16. Let

F C
n (x, y, q) =

∑

ν∈MSn

w(ν).

Cigler shows that F C
n (x, y, q) satisfies F C

0 (x, y, q) = 1, F C
1 (x, y, q) = x, and

F C
n (x, y, q) = xF C

n−1(x, y, q) + yqn−1Fn−2(x, y, q).

Note that F C
n (1, 1, q) = F K

n (q). In fact, Cigler [6, 7, 8, 9] studied more general q-Fibonacci
numbers satisfying the above recursion with yqn−1 replaced by t(yqn−1), where t is an arbitrary
nonzero function. One could apply our method to such q-analogues, but we choose t to be the
identity for simplicity.

Proposition 3.2 For all n ≥ 0,

Fn(q) = q(
n

2)F K
n (1/q).
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Proof: It suffices to construct a bijection Πn(13/2, 123) ↔ BSn−1 such that if π ↔ β then
rb(π) =

(

n
2

)

− ρ(β).
Let π ∈ Πn(13/2, 123) be mapped to the binary sequence β = b1 . . . bn−1 where bi = 0 if i and

i + 1 are in separate blocks and bi = 1 otherwise. For example, 1/2/34/56 ↔ 00101. We first
show that this map is well defined. Suppose π 7→ b1 . . . bn−1, where bi = 1 and bi+1 = 1 for some
i, then i, i + 1, and i + 2 must be in a block together. This contradicts the fact that the blocks
may only be of size at most 2. Proving that this map is a bijection is straightforward.

Now, suppose that π ↔ β and β = b1 . . . bn−1. If π = π0 = 1/2/ . . . /n so that bi = 0 for all i,
then

rb(π) =
n−1
∑

i=1

i =

(

n

2

)

=

(

n

2

)

− ρ(0 . . . 0).

If bi = 1 for some i then i and i + 1 are in the same block. In π0, the contribution of the blocks
{i} and {i+1} to rb was (i− 1)+ i = 2i− 1. But in π the contribution of {i, i+1} is only i− 1.
Thus, for each bi = 1 we reduce rb(π0) by i and hence,

rb(π) =

(

n

2

)

−
∑

i : bi=1

i =

(

n

2

)

− ρ(β). �

In order to describe the relationship between Fn(q) and F C
n (x, y, q) we will define a weight,

ω, on the partitions in Πn(13/2, 123). Let

ω : Πn(13/2, 123) → Z[x, y, q],

with ω(π) = ω(B1/B2/ . . . /Bk) =
∏k

i=1 ω(Bi), where

ω(Bj) =

{

xqminBj−1 if #Bj = 1,
yqminBj−1 if #Bj = 2.

Now, let

Fn(x, y, q) =
∑

π∈Πn(13/2,123)

ω(π).

Let s(π) be the number of singletons of π, d(π) be the number of doubletons of π. It is easy to
see directly from the definitions that

Fn(x, y, q) =
∑

π∈Πn(13/2,123)

xs(π)yd(π)qrb(π).

The proof of Proposition 3.1 also shows that

Fn(x, y, q) = xqn−1Fn−1(x, y, q) + yqn−2Fn−2(x, y, q). (1)

The demonstration of the next result is omitted since it parallels that of Proposition 3.2,
using the bijection Πn(13/2, 123) ↔ MSn mentioned above.

Proposition 3.3 For all n ≥ 0,

Fn(x, y, q) = q(
n

2)F C
n (x, y, 1/q). �
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4 q-Fibonacci Identities

We now provide bijective proofs of q-analogues of Fibonacci identities. Many of the proofs in this
paper are simply q-analogues of the tiling scheme proofs of Fibonacci identities given in [2, 3].
We should also note that Shattuck and Wagner [14, 15] have used various statitics on domino
arrangements to obtain q-identities and parity results for Fibonacci and Lucas numbers.

It is impressive that merely using the rb statistic on Πn(13/2, 123) gives so many identities
with relatively little effort. We will state our identities for Fn(x, y, q), but one can translate them
in terms of F K

n (q) or F C
n (x, y, q) using Propositions 3.2 or 3.3, respectively.

Theorem 4.1 For all n ≥ 0,

Fn+2(x, y, q) = xn+2q(
n+2

2 ) +
n

∑

j=0

xjyq(
j+1

2 )Fn−j(xqj+2, yqj+2, q).

Proof: There is exactly one partition in Πn+2(13/2, 123) with all singleton blocks and the

weight of this partition is xn+2q(
n+2

2 ). The remaining partitions have at least one doubleton.
Consider all partitions where the first doubleton is {j + 1, j + 2}. There are exactly j singletons

preceding this doubleton contributing xjq(
j

2) to the weight of each partition. The doubleton
contributes weight yqj. The remaining blocks of these partitions form layered matchings of
[j + 3, n + 2]. We may think of these as being layered matchings of [n − j] where the contri-
bution of each block to the rb statistic is increased by j + 2. Thus, these contribute weight
Fn−j(xqj+2, yqj+2, q). Hence, the contributed weight of the partitions whose first doubleton is

{j + 1, j + 2}, is xjyq(
j+1

2 )Fn−j(xqj+2, yqj+2, q). Summing from j = 0 to n completes the proof.
�

Theorem 4.2 For all n ≥ 0,

F2n+1(x, y, q) =

n
∑

j=0

xyjqj(j+1)F2n−2j(xq2j+1, yq2j+1, q),

and

F2n(x, y, q) = ynqn(n−1) +

n−1
∑

j=0

xyjqj(j+1)F2n−2j−1(xq2j+1, yq2j+1, q).

Proof: If π ∈ Π2n+1(13/2, 123), then π must have at least one singleton. Consider all
partitions with first singleton {2j + 1}. This block must be preceded by j doubletons, which
contribute yjqj(j−1) to the weight. The singleton {2j + 1} contributes xq2j to the weight. The
remaining 2n−2j elements form a layered matching of [2j +2, 2n+1]. As in the previous proof,
we may think of these as being elements of Π2n−2j(13/2, 123) where the contribution of each block
to rb is increased by 2j +1. This portion of our partition will contribute F2n−2j(xq2j+1, yq2j+1, q)
to the weight. This proves the first identity. The proof of the second identity is similar, and
hence omitted. �
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Theorem 4.3 For all n ≥ 0 and m ≥ 0,

Fm+n(x, y, q) = Fm(x, y, q)Fn(xqm, yqm, q) + yqm−1Fm−1(x, y, q)Fn−1(xqm+1, yqm+1, q).

Proof: Every π ∈ Πm+n(13/2, 123) does or does not have {m, m + 1} as a block. If π has
{m, m + 1} as a block then the blocks prior to this block form a partition in Πm−1(13/2, 123).
This contributes Fm−1(x, y, q) to the weight. The doubleton {m, m + 1} has weight yqm−1. The
remaining blocks form a partition in Π[m+2,m+n](13/2, 123). The contribution of each block in
this partition to the rb statistic is increased by m+1, so this portion of the partition contributes
Fn−1(xqm+1, yqm+1, q) to the weight. Thus, the sum of ω(π) over all π in Πm+n(13/2, 123) with
doubleton {m, m + 1} is the second term in the sum above.

If π ∈ Πm+n(13/2, 123) does not have {m, m + 1} as a block, then we can split π into a
partition of [m] and a partition of [m + 1, m + n]. By a similar argument, the sum of ω(π) over
all these π is Fm(x, y, q)Fn(xqm, yqm, q). �

For the proof of the next theorem we will need shifted partitions. A partition π ⊢ [n] shifted
by k positions, denoted π′, consists of a block of k blank positions followed by the partition of
[k + 1, k + n] obtained by adding k to every element of π. For example, shifting π = 134/25 by
2 positions gives π′ = /356/47.

Let Πn,k(13/2, 123) be the set of partitions π ∈ Πn(13/2, 123) shifted k positions. Notice that
the contribution of each block of π′ to rb is the contribution of the corresponding block of π
increased by k. That is

∑

π∈Πn,k(13/2,123)

ω(π) = Fn(xqk, yqk, q).

Theorem 4.4 For all m, n ≥ 1,

Fm+1(x, y, q)Fn+1(xqm, yqm, q)=xqmFm+n+1(x, y, q)+y2q2m−1Fm−1(x, y, q)Fn−1(xqm+2, yqm+2, q).

Proof: The left-hand side is the generating function for all pairs (π1, π2) ∈ Πm+1(13/2, 123)×
Πn+1,m(13/2, 123). The pair (π1, π2) takes one of two forms. Either π1 ends in a doubleton and
π2 begins with a doubleton or not.

Suppose π1 ends in a doubleton and π2 begins with a doubleton. These doubletons contribute
y2q2m−1 to ω(π1)ω(π2). Dropping these doubletons gives a pair (π′

1, π
′
2) ∈ Πm−1(13/2, 123) ×

Πn−1,m+2(13/2, 123). Thus, summing the weights of these pairs gives the second term in the sum
above.

Suppose π1 ends in a singleton, π2 begins with a singleton, or both. Such a singleton con-
tributes xqm to ω(π1)ω(π2). Removing one singleton (in the case of two singletons, it does not
matter which) and concatenating π1 and π2 gives a partition π ∈ Πm+n+1(13/2, 123). Each
π ∈ Πm+n+1(13/2, 123) has m + 1 in a block with m + 2, in a block with m, or in its own
block, corresponding to just π1 ending in a singleton, just π2 beginning with a singleton, or both.
So every π ∈ Πm+n+1(13/2, 123) can be constructed as above. Thus these contribute weight
xqmFm+n+1(x, y, q). �

8



Theorem 4.5 For all n ≥ 0,

Fn(x, y, q)Fn+1(x, y, q) =
n

∑

j=0

xyjq

—

j2

2

�

Fn−j(xqj , yqj, q)Fn−j(xqj+1, yqj+1, q).

Proof: Consider a pair

(π1, π2) ∈ Πn(13/2, 123) × Πn+1(13/2, 123)

with π1 = A1/A2/ . . . /Aℓ, and π2 = B1/B2/ . . . /Bm. Search through the blocks in the order
B1, A1, B2, A2, . . . and find the first singleton block. Such a block must exists since either n or
n + 1 is odd.

If the first singleton is some Ai = {j} then B1, . . . , Bi are all doubletons, and j is odd.
There are (j − 1)/2 doubletons at the beginning of π1 and (j +1)/2 doubletons at the beginning
of π2 contributing yjq(j−1)2/2 to the weight. The singleton block Ai has weight xqj−1. The
remaining ℓ − i blocks of π1 form a layered matching of [j + 1, n] providing a contribution
of Fn−j(xqj, yqj, q). The remaining m − i blocks of π2 are layered matching of [j + 2, n + 1]
contributing Fn−j(xqj+1, yqj+1, q). So, the weight contributed by all pairs (π1, π2) with Ai = {j}
as the first singleton is

xyjq

—

j2

2

�

Fn−j(xqj, yqj, q)Fn−j(xqj+1, yqj+1, q).

If the first singleton is some Bi = {j +1} then j is even and, by similar arguments, the weight
contributed by all such pairs is exactly the same as the one displayed above. Summing over both
even and odd j gives the desired identity. �

The identity

Fn =
∑

k≥0

(

n − k

k

)

relates the Fibonacci numbers to the binomial coefficients, where
(

n
k

)

= 0 if k > n. To state a
q-analogue of this identity, we define the q-binomial coefficients to be

[

n
k

]

=
k

∏

i=1

qn−i+1 − 1

qi − 1
,

where, by analogy with binomial coefficients,

[

n
k

]

= 0 if k > n.

Carlitz [4] derived the following identity using algebraic and operator methods. We will
provide an alternate proof using one of the standard combinatorial interpretations of the q-
binomial coefficients. In particular, let Pk,l denote the set of all integer partitions with at most
l parts, each of size at most k. Then [18, Proposition 1.3.19]

[

n
k

]

=
∑

λ∈Pk,n−k

q|λ|. (2)
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It will be convenient to represent each λ ∈ Pk,l as a path p in the integer lattice Z
2 from the

origin to (k, l), where each step of p is one unit North (N) or one unit East (E). In this case,
the region between p and the y-axis is just the Ferrers diagram of the corresponding λ. And the
area of this region is |λ|.

Theorem 4.6 (Carlitz) For all n ≥ 0,

Fn(x, y, q) =
∑

k≥0

xn−2kykq(
k

2)+(n−k

2 )
[

n − k
k

]

.

Proof: Let Πk
n(13/2, 123) be the set of π ∈ Πn(13/2, 123) with exactly k doubletons. Thus,

we have Πn(13/2, 123) =
⊎

2k≤n Πk
n(13/2, 123), where

⊎

is the disjoint union. This implies that

Fn(x, y, q) =
∑

k≥0

xn−2kyk





∑

π∈Πk
n(13/2,123)

qrb(π)



 .

So it suffices to show that

∑

π∈Πk
n(13/2,123)

qrb(π) = q(
k

2)+(n−k

2 )
[

n − k
k

]

. (3)

By equation (2), we will be done if we can find a bijection Πk
n(13/2, 123) → Pk,n−2k such that

if π ↔ λ then

rb(π) = |λ| +

(

k

2

)

+

(

n − k

2

)

. (4)

Map π = B1/ . . . /Bn−k to the lattice path p = s1, . . . , sn−k where si = N or E depending on
whether Bi is a singleton or doubleton, respectively. It is easy to see that the corresponding λ is
in Pk,n−2k and that this is bijective.

As far as the weights, first consider the contribution to rb(π) of those pairs (b, Bj) where
b = min Bi for a doubleton Bi. If |Bj| = 1, then Bi and Bj contribute an E-step followed later
by an N -step in p. Such pairs of steps are in bijection with squares of the Ferrers diagram, and
thus such (b, Bj) account for the |λ| term of (4). If, on the other hand, |Bj| = 2 then there are
(

k
2

)

choices for the pair (b, Bj), giving the next term of our sum.
Finally we need to account for the pairs (b, Bj) where where b is not the minimum of a

doubleton. But then b could come from any of the n− k blocks, picking the only element if it is
a singleton and the non-minimum if it is a doubleton. So there are

(

n−k
2

)

ways to pick the pair,
finishing the proof. �

Theorem 4.7 For all n ≥ 0,

F2n(x, y, q) =

n
∑

k=0

xn−kykq(
n+k

2 )−nk

[

n
k

]

Fn−k(xqn+k, yqn+k, q).

10



Proof: Let ∆k be the set of partitions π ∈ Π2n(13/2, 123), which begin with a partition of
[n + k] having exactly k doubletons. Then Π2n(13/2, 123) is the disjoint union of the ∆k since
the first n blocks of any layered matching of [2n] must form a partition of the desired type. Now
the same technique used to prove equation (3) yields

∑

π∈∆k

ω(π) = q(
n+k

2 )−nkxn−kyk

[

n
k

]

Fn−k(xqn+k, yqn+k, q).

Summing over all k completes the proof. �

We conclude this section by finding a q-analogue of the identity

2n = Fn+1 +
n−2
∑

k=0

Fk2
n−2−k.

We provide a proof for a q-analogue involving only Fn(q), since we will need to consider blocks
with more than 2 elements.

Theorem 4.8 For all n ≥ 0,

n
∏

i=1

(1 + qi) = Fn+1(q) +

n−2
∑

k=0

qkFk(q)

n
∏

i=k+3

(1 + qi). (5)

Proof: From Theorem 2.1 we have

n
∏

i=1

(1 + qi) =
∑

π∈Πn+1(13/2)

qrb(π).

So we need to show that the right-hand side of equation (5) also counts Πn+1(13/2) with respect
to rb.

The first term on the right-hand side counts those π ∈ Πn+1(13/2) that are matchings. For
any other π, suppose the first block of size 3 or larger has minimum element k + 1. The first k
elements form a layered matching of [k], and are hence counted by Fk(q). The block containing
k + 1 contributes qk. And the remaining blocks contribute

∏n
i=k+3(1 + qi). �

5 Determinant Identities

In [7], Cigler proved a q-analogue of the Euler-Cassini identity,

FnFn+m−1 − Fn−1Fn+m = (−1)nFm−1.

We state his theorem without proof since it will follow from our results later on in this section.

11



Theorem 5.1 (Cigler) For all n, m ≥ 1, the q-Fibonacci polynomials F C
n (x, y, q) satisfy

F C
n (x, y, q)F C

n+m−1(x, yq, q) − F C
n−1(x, yq, q)F C

n+m(x, y, q) = (−y)nq(
n+1

2 )F C
m−1(x, yqn+1, q). �

Cigler proves this identity twice, once by using determinants and once by adapting a bijective
proof of Zeilberger and Werman [21]. We will prove a q-analogue of the Euler-Cassini identity
for Fn(x, y, q) by using weighted lattice paths and their relationship to minors of a Toeplitz-like
matrix for the q-Fibonacci sequence. This is a method that appeared in a paper of Lindström [12],
and which was later shown to have broad application by Gessel and Viennot [10]. We should
note that Benjamin, Cameron, and Quinn [1] have recentlt used this technique to investigate
determinants involving ordinary Fibonacci numbers.

Consider the digraph D = (V, A) where the vertices are labeled 0, 1, 2, . . ., and the only arcs
are from vertex n to vertex n + 1 and from vertex n to vertex n + 2 for all nonnegative integers
n. The portion of this digraph consisting of the vertices 0, 1, 2, . . . , 7 is pictured below. All arcs
are directed to the right.

r r r r r r r r

0 1 2 3 4 5 6 7

It is easy to see that the number of directed paths from a to b in D is Fb−a. Let the arc from
n to n + 1, written ~en,n+1, have weight ω(~en,n+1) = xqn. Let the arc from n to n + 2 have weight

ω(~en,n+2) = yqn. Let p be a directed path from a to b, written a
p
→ b. We define the weight of

p, ω(p), to be the product of the weights of its arcs. It follows easily from the definitions that

∑

p

ω(p) = Fb−a(xqa, yqa, q),

where the sum is over all paths p from a to b.
Suppose that u : u1 < u2 < . . . < uk and v : v1 < v2 < . . . < vk are sequences of vertices in

D. A k-tuple of paths from u to v is

P = {u1
p1

→ vα(1), u2
p2

→ vα(2), . . . , uk
pk→ vα(k)} (6)

where α ∈ Sk, the symmetric group on k elements. We will let the weight of such a k-tuple be
ω(P ) =

∏k
i=1 ω(pi). Let sgn(P ) = sgn(α), where sgn denotes sign.

Now consider the Toeplitz-like matrix

F =











F0(x, y, q) F1(x, y, q) F2(x, y, q) F3(x, y, q) · · ·
0 F0(xq, yq, q) F1(xq, yq, q) F2(xq, yq, q) · · ·
0 0 F0(xq2, yq2, q) F1(xq2, yq2, q) · · ·
...

...
...

...
. . .











,
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where we label the rows and columns starting with 0. Let Fu,v be the submatrix of F with rows
and columns indexed by the sequences u and v, respectively. Directly from the definitions we
have that

det Fu,v =
∑

P

sgn(P )ω(P ) (7)

where the sum is over all k-tuples of paths of the form (6).
But we can simplify this sum further. We will say that two paths are noncrossing if they do

not share a vertex.

Theorem 5.2 Let u : u1 < u2 < . . . < uk and v : v1 < v2 < . . . < vk be vertices in D. Then

det Fu,v =
∑

P

sgn(P )ω(P )

where the sum is over all non-crossing k-tuples of paths from u to v.

Proof: We prove this by giving a weight-preserving, sign-reversing involution on the k-tuples of
paths where at least one pair of paths cross. Let k-tuple P have a crossing pair of paths. Let pi

be the path with smallest index of any path which crosses another path. Let w be the first vertex
shared by pi and another path and let pj be the path of smallest index j > i, that goes through
w. Exchange the portions of pi and pj starting at w. This produces a new k-tuple of paths, Q,
and it is easy to check that this is an involution. Since the weight of the k-tuple of paths is just
the product of the weights of all arcs appearing in the k-tuple, the weight is preserved. Finally,
the permutations for P and Q differ by a transposition, so sgn(P ) = −sgn(Q). �

We will now completely characterize the minors of F obtaining, along the way, a q-analogue
of the Euler-Cassini identity. Given u and v and a vertex c, we call a k-tuple P of paths from u
to v reducible at c if no path in P contains both a vertex less than c and a vertex greater than or
equal to c. A family of k-tuples is reducible at c if each k-tuple is. If u1 < c ≤ vk, then it is easy
to see that the sum of the signed weights for a reducible family can be expressed as a product
over two smaller families. So it suffices to consider path families which are not reducible for any
c.

Now consider the case when ui = vj for some i, j. In any k-tuple P , this forces pi to be
the path of length 0 starting and ending at c = ui = vj. The case of all k-tuples P which are
reducible at c has already been covered. But if P is not reducible at c then, since paths can
connect integers at most two apart, P contains exactly one path p beginning before c and ending
after c. Furthermore, this path must contain vertices c− 1 and c +1. By adding a new endpoint
at c−1 and a new initial vertex at c+1, one obtains a bijection between all such P and a family
of paths which is reducible at c. Thus, taking into account ω(~ec−1,c+1) and the sign change that
occurs, we can determine the signed sum of the weights of the paths in this second case using a
reducible family. Thus when ui = vj we can compute the determinant using reducible families,
and so we will assume from now on that ui 6= vj for all i, j.

The next lemma severely limits the number of minors of F which can be nonzero. For a
sequence of vertices u and a nonnegative integer c, define

u(c) = number of ui < c.

13



Lemma 5.3 Suppose the sequences u and v consist of distinct vertices. If det Fu,v 6= 0 then we
must have

0 ≤ v(c) − u(c) ≤ 2 (8)

for all c ≥ 0.

Proof: We prove both inequalities by contradiction. Suppose first that v(c) − u(c) < 0. Then,
in a corresponding k-tuple P , the number of paths ending before c is greater than the number
of paths beginning in that interval. Clearly there is no such k-tuple and so det Fu,v = 0 by
equation (7).

On the other hand, suppose v(c)−u(c) ≥ 3. Then there must be at least three paths in P that
contain both vertices less than c and vertices greater than or equal to c. Since adjacent vertices
on a path are at most two apart as integers, it is impossible for these paths to be nonintersecting.
So det Fu,v = 0 by Theorem 5.2. �

The first inequality in the lemma says that the sequence obtained by combining u and v is
a ballot sequence. But the second inequality curtails the number of ballot sequences we need
to consider. Also, if v(c) − u(c) = 0 for some c with u1 < c ≤ vk, then any corresponding
noncrossing k-tuple is reducible at c. Thus there is only one sequence satisfying the lemma
which is also irreducible, namely

u1 < u2 < v1 < u3 < v2 < u4 < v3 < . . . < uk < vk−1 < vk. (9)

So to complete our characterization of the minors of F , we need only consider these sequences.

Theorem 5.4 Let u and v be as in (9). Then

det Fu,v = (−y)
Pk−1

i=1
[vi−ui+1+1] q

Pk−1

i=1 [(vi
2 )−(ui+1−1

2
)]

·Fu2−u1−1(xqu1 , yqu1, q) Fvk−vk−1−1(xqvk−1+1, yqvk−1+1, q)

k−2
∏

i=1

Fui+2−vi−2(xqvi+1, yqvi+1, q).

Proof: Consider a nonintersecting k-tuple P counted by det Fu,v. Then p1 starts at u1 and
must contain the point u2 − 1 so as not to intersect p2. This part of p1 is counted by the factor
Fu2−u1−1(xqu1 , yqu1, q). Between u2 and v1, the nonintersecting condition forces p1 to go through
exactly the points having the same parity as u2 − 1 and p2 to go through the others. One of the
two paths then terminates at v1 and the other goes from v1 − 1 to v1 + 1. So the contribution of
these steps to the weight is

yqu2−1 yqu2 · · · yqv1−1 = yv1−u2+1q(
v1
2 )−(u2−1

2 ). (10)

Whichever path continues on from v1 +1 must then go through u3−1 to avoid intersecting p3,
contributing Fu3−v1−2(xqv1+1, yqv1+1, q) to the weight. Next, p3 and this path alternate vertices
between u3 and v2, giving a weight which is the same as that in equation (10) but with all the
indices increased by one.
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It is clear that this pattern continues, giving the rest of the terms of the product. The sign
of P is derived in a similar manner, so we omit the proof. �

Taking k = 2 and the sequences u : 0 < 1 and v : n < n + m in the previous theorem
immediately gives a q-analogue of the Euler-Cassini Identity.

Corollary 5.5 For all n,≥ 1,

Fn(x, y, q)Fn+m−1(xq, yq, q) − Fn−1(xq, yq, q)Fn+m(x, y, q) = (−y)nq(
n

2)Fm−1(xqn+1, yqn+1, q).

Using this corollary and the identity

Fn(xqa, yqa, q) = q(
n

2)+naF C
n (x, y/qa, 1/q)

(which is an easy extension of Proposition 3.3) we obtain Ciglers’ q-analogue in Theorem 5.1.

6 Other Analogues

The q-Fibonacci numbers that are the focus of this paper come from two statistics, which are
equidistributed over the set Πn(13/2, 123). The next natural question is whether the bistatistic
(ls, rb) also has nice properties when considered on the set Πn(13/2, 123). The answer is yes.
Define

Fn(x, y, p, q) =
∑

π∈Πn(13/2,123)

xs(π)yd(π)pls(π)qrb(π).

We will also need the p, q-binomial coefficient,

[

n
k

]

p,q

=
k

∏

i=1

pn−i+1 − qn−i+1

pi − qi
.

Note that we have F0(x, y, p, q) = 1, F1(x, y, p, q) = x and for n ≥ 2

Fn(x, y, p, q) = xqn−1Fn−1(xp, yp, p, q) + yqn−2Fn−2(xp2, yp2, p, q).

All of the demonstrations for the formulas in Section 4 translate in a straightforward manner
to the p, q case. So we will merely list these p, q-identities in the following table and leave
the proofs to the reader. In this list, we let Fn(x, y) = Fn(x, y, p, q), and Fn(xpa, ypa)1,1 be
Fn(xpa, ypa, p, q) evaluated at x = y = 1.

In closing, we should note that there are other ways to obtain q-analogues of Fibonacci num-
bers which could be studied. Simion and Schmidt [17] discovered a restricted set of permutations
which is counted by the Fibonacci numbers. There is also a restricted set of permutations nat-
urally counted by F2n, see the paper of West [22]. Given the plethora of permutation statistics,
some of these sets should yield interesting q-analogues.
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List of p, q-Fibonacci Identities

Fn+2(x, y) = xn+2(pq)(
n+2

2 ) +

n
∑

j=0

xjy

(

q

p

)(j

2)
pn(j+1)qjFn−j(xqj+2, yqj+2)

F2n+1(x, y) =
n

∑

j=0

xyjp(2n−j)(j+1)−jqj(j+1)F2n−2j(xq2j+1, yq2j+1)

F2n(x, y) = yn(pq)n(n−1) +

n−1
∑

j=0

xyjp(2n−j−1)(j+1)−jqj(j+1)F2n−2j−1(xq2j+1, yq2j+1)

Fm+n(x, y) = Fm(xpn, ypn)Fn(xqm, yqm) + ypn−1qm−1Fm−1(xpn+1, ypn+1)Fn−1(xqm+1, yqm+1)

Fm+1(xpn, ypn)Fn+1(xqm, yqm) = xpnqmFm+n+1(x, y)

+ y2p2n−1q2m−1Fm−1(xpn+2, ypn+2)Fn−1(xqm+2, yqm+2).

Fn(x, y)Fn+1(x, y) =
n

∑

j=0

xyjpn(j+1)−j(j+3)/2q

—

j2

2

�

Fn−j(xqj, yqj)Fn−j(xqj+1, yqj+1).

Fn(x, y) =
∑

k≥0

xn−2kyk(pq)(
n

2)−k(n−k)

[

n − k
k

]

p,q

.

F2n(x, y) =

n
∑

k=0

xn−kyk(pq)(
n+k

2 )−nk

[

n
k

]

p,q

Fn−k(xqn+k, yqn+k).

n
∏

i=1

(1 + pn−i+1qi) = Fn+1(x, y)1,1 +
n−2
∑

k=0

qkFk(xpn−k+1, ypn−k+1)1,1

n
∏

i=k+3

(1 + pn−i+1qi).
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