Avoidance of Partitions of a Three Element Set

Adam M. Goyt Department of Mathematics Michigan State University East Lansing, MI 48824-1027 goytadam@msu.edu www.math.msu.edu/~goytadam

June 14, 2006

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Avoidance of Partitions of a Three Element Set

Adam M. Goyt

Avoidance of Partitions of a Three Element Set

> Adam M. Goyt Department of

Mathematics Michigan State University East Lansing, MI 48824-1027 goytadam@msu.edu www.math.msu.edu

Introduction

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへで

History

- Noncrossing Partitions of Kreweras (1972)
- Klazar (1996, 2000) first to give a definition
- Sagan (2006)
- Klazar and Marcus (2006)

Avoidance of Partitions of a Three Element Set

Adam M. Goyt Department of Mathematics Michigan State University East Lansing, MI 48824-1027 goytadam@msu.edu www.math.msu.edu

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Definition A partition π of a set S, written $\pi \vdash S$, is $B_1, B_2, \ldots B_k \subseteq S$, called blocks, so that $\bigcup_{i=1}^k B_k = S$. Avoidance of Partitions of a Three Element Set

Adam M. Goyt

Department of Mathematics Michigan State University East Lansing, MI 48824-1027 goytadam@msu.edu www.math.msu.edu

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Definition A partition π of a set S, written $\pi \vdash S$, is $B_1, B_2, \dots B_k \subseteq S$, called blocks, so that $\bigcup_{i=1}^k B_k = S$.

 $\pi = B_1/B_2/\dots/B_k$

Canonical Ordering: $\min B_1 < \min B_2 < \cdots < \min B_k$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Avoidance of Partitions of a Three Element Set

Definition A partition π of a set S, written $\pi \vdash S$, is $B_1, B_2, \dots B_k \subseteq S$, called blocks, so that $\bigcup_{i=1}^k B_k = S$.

 $\pi = B_1/B_2/\dots/B_k$

Canonical Ordering: $\min B_1 < \min B_2 < \cdots < \min B_k$

$$\Pi_n := \{ \pi \vdash [n] \} \text{ and } [n] := \{1, 2, \dots, n\}$$

Avoidance of Partitions of a Three Element Set

Adam M. Goyt Department of Mathematics Michigan State University East Lansing, MI 48824-1027 goytadam@msu.edu

www.math.msu.edu/

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Definition A partition π of a set S, written $\pi \vdash S$, is $B_1, B_2, \dots B_k \subseteq S$, called blocks, so that $\bigcup_{i=1}^k B_k = S$.

 $\pi = B_1/B_2/\dots/B_k$

Canonical Ordering: $\min B_1 < \min B_2 < \cdots < \min B_k$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

$$\Pi_n := \{ \pi \vdash [n] \} \text{ and } [n] := \{ 1, 2, \dots, n \}$$

Example 137/26/45 ⊢ [7] Avoidance of Partitions of a Three Element Set

Definition A partition π of a set S, written $\pi \vdash S$, is $B_1, B_2, \ldots B_k \subseteq S$, called blocks, so that $\bigcup_{i=1}^k B_k = S$.

 $\pi = B_1/B_2/\dots/B_k$

Canonical Ordering: $\min B_1 < \min B_2 < \cdots < \min B_k$

$$\Pi_n := \{ \pi \vdash [n] \} \text{ and } [n] := \{ 1, 2, \dots, n \}$$

Definition

A subpartition of a partition σ , is a partition σ' so that each block of σ' is contained in a different block of σ .

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへつ

Example

137/26/45 ⊢ [7]

Avoidance of Partitions of a Three Element Set

Definition A partition π of a set S, written $\pi \vdash S$, is $B_1, B_2, \ldots B_k \subseteq S$, called blocks, so that $\bigcup_{i=1}^k B_k = S$.

 $\pi = B_1/B_2/\ldots/B_k$

Canonical Ordering: $\min B_1 < \min B_2 < \cdots < \min B_k$

$$\Pi_n := \{ \pi \vdash [n] \} \text{ and } [n] := \{ 1, 2, \dots, n \}$$

Definition

A subpartition of a partition σ , is a partition σ' so that each block of σ' is contained in a different block of σ .

Example

 $137/26/45 \vdash [7]$ 26/3 is a subpartition, Avoidance of Partitions of a Three Element Set

Adam M. Goyt Department of Mathematics Michigan State University East Lansing, MI

48824-1027 govtadam@msu.edu

www.math.msu.edu

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへの

Definition A partition π of a set S, written $\pi \vdash S$, is $B_1, B_2, \ldots B_k \subseteq S$, called blocks, so that $\bigcup_{i=1}^k B_k = S$.

 $\pi = B_1/B_2/\dots/B_k$

Canonical Ordering: $\min B_1 < \min B_2 < \cdots < \min B_k$

$$\Pi_n := \{ \pi \vdash [n] \} \text{ and } [n] := \{ 1, 2, \dots, n \}$$

Definition

A subpartition of a partition σ , is a partition σ' so that each block of σ' is contained in a different block of σ .

Example

 $137/26/45 \vdash [7]$ 26/3 is a subpartition, but 13/2/6 is not. Avoidance of Partitions of a Three Element Set

Definition

Let $S \subseteq \mathbb{Z}$ and #S = n then the standardization map is the unique order preserving bijection $St_S : S \rightarrow [n]$.

Avoidance of Partitions of a Three Element Set

Adam M. Goyt

Department of Mathematics Michigan State University East Lansing, MI 48824-1027 goytadam@msu.edu www.math.msu.edu

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Definition

Let $S \subseteq \mathbb{Z}$ and #S = n then the standardization map is the unique order preserving bijection $St_S : S \rightarrow [n]$.

Example

$$S = \{2, 3, 5, 8, 9\}$$
 then

$$egin{array}{rcl} St:S&
ightarrow&[5]\ 2&\mapsto&1\ 3&\mapsto&2\ etc \end{array}$$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Avoidance of Partitions of a Three Element Set

Adam M. Goyt

Definition

Let $S \subseteq \mathbb{Z}$ and #S = n then the standardization map is the unique order preserving bijection $St_S : S \rightarrow [n]$.

Example

$$S = \{2, 3, 5, 8, 9\}$$
 then

$$egin{array}{rcl} St:S&
ightarrow&[5]\ 2&\mapsto&1\ 3&\mapsto&2\ etc \end{array}$$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

St acts elmentwise. 38925

Avoidance of Partitions of a Three Element Set

Adam M. Goyt

Definition

Let $S \subseteq \mathbb{Z}$ and #S = n then the standardization map is the unique order preserving bijection $St_S : S \rightarrow [n]$.

Example

 $S=\{2,3,5,8,9\}$ then

$$\begin{array}{rcccc} \mathrm{S}t:\mathrm{S}&
ightarrow&[5]\\ \mathrm{S}t:\mathrm{3}&\mapsto&\mathrm{1}\\ \mathrm{S}t:\mathrm{7}&\mapsto&\mathrm{2}\\ &&\mathrm{etc}\end{array}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへつ

St acts elmentwise. St(38925) = 24513 Avoidance of Partitions of a Three Element Set

Adam M. Goyt

Definition

Let $p = p_1 p_2 \dots p_k \in S_k$ and $q = q_1 q_2 \dots q_n \in S_n$. Then q contains the pattern p if there exists $q' = q_{i_1} q_{i_2} \dots q_{i_k}$ with St(q') = p. Otherwise, q avoids p.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Avoidance of Partitions of a Three Element Set

Adam M. Goyt

Definition

Let $p = p_1 p_2 \dots p_k \in S_k$ and $q = q_1 q_2 \dots q_n \in S_n$. Then q contains the pattern p if there exists $q' = q_{i_1} q_{i_2} \dots q_{i_k}$ with St(q') = p. Otherwise, q avoids p.

Definition

Let $\pi \in \Pi_k$ and $\sigma \in \Pi_n$. Then σ contains the pattern π if there is a subpartition σ' of σ with $St(\sigma') = \pi$. Otherwise, σ avoids π .

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへつ

Avoidance of Partitions of a Three Element Set

Adam M. Goyt

Definition

Let $p = p_1 p_2 \dots p_k \in S_k$ and $q = q_1 q_2 \dots q_n \in S_n$. Then q contains the pattern p if there exists $q' = q_{i_1} q_{i_2} \dots q_{i_k}$ with St(q') = p. Otherwise, q avoids p.

Definition

Let $\pi \in \Pi_k$ and $\sigma \in \Pi_n$. Then σ contains the pattern π if there is a subpartition σ' of σ with $St(\sigma') = \pi$. Otherwise, σ avoids π .

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへつ

Example

 $\sigma = 137/26/45$ Pattern: $\pi = 13/2$

Avoidance of Partitions of a Three Element Set

Adam M. Goyt

Definition

Let $p = p_1 p_2 \dots p_k \in S_k$ and $q = q_1 q_2 \dots q_n \in S_n$. Then q contains the pattern p if there exists $q' = q_{i_1} q_{i_2} \dots q_{i_k}$ with St(q') = p. Otherwise, q avoids p.

Definition

Let $\pi \in \Pi_k$ and $\sigma \in \Pi_n$. Then σ contains the pattern π if there is a subpartition σ' of σ with $St(\sigma') = \pi$. Otherwise, σ avoids π .

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへつ

Example

 $\sigma = 137/26/45$ Pattern: $\pi = 13/2$ Copies: $\pi' = 17/4 \text{ or } 26/3$ Avoidance of Partitions of a Three Element Set

Adam M. Goyt

Definition

Let $p = p_1 p_2 \dots p_k \in S_k$ and $q = q_1 q_2 \dots q_n \in S_n$. Then q contains the pattern p if there exists $q' = q_{i_1} q_{i_2} \dots q_{i_k}$ with St(q') = p. Otherwise, q avoids p.

Definition

Let $\pi \in \Pi_k$ and $\sigma \in \Pi_n$. Then σ contains the pattern π if there is a subpartition σ' of σ with $St(\sigma') = \pi$. Otherwise, σ avoids π .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへの

Example

 $\sigma = 137/26/45$ Pattern: $\pi = 13/2$ Copies: $\pi' = 17/4 \text{ or } 26/3$ σ avoids 1/234.

Avoidance of Partitions of a Three Element Set

Adam M. Goyt

Avoidance of Partitions of a Three Element Set

> Adam M. Goyt Department of Mathematics

Michigan State University East Lansing, MI 48824-1027 goytadam@msu.edu www.math.msu.edu

Enumeration

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Definition For a subset $R \subseteq S_k$ and a subset $S \subseteq \Pi_k$ let

 $S_n(R) = \{q \in S_n : q \text{ avoids every } p \in R\},\$

 $\Pi_n(\mathbf{S}) = \{ \sigma \in \Pi_n : \sigma \text{ avoids every } \pi \in \mathbf{S} \}.$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Avoidance of Partitions of a Three Element Set

Adam M. Goyt

Definition For a subset $R \subseteq S_k$ and a subset $S \subseteq \Pi_k$ let

 $S_n(R) = \{q \in S_n : q \text{ avoids every } p \in R\},\$

 $\Pi_n(\mathbf{S}) = \{ \sigma \in \Pi_n : \sigma \text{ avoids every } \pi \in \mathbf{S} \}.$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Question For any $R \subseteq \Pi_3$ what is $\#\Pi_n(R)$?

Avoidance of Partitions of a Three Element Set

Adam M. Goyt

Definition For a subset $R \subseteq S_k$ and a subset $S \subseteq \Pi_k$ let

 $S_n(R) = \{q \in S_n : q \text{ avoids every } p \in R\},$

 $\Pi_n(\mathbf{S}) = \{ \sigma \in \Pi_n : \sigma \text{ avoids every } \pi \in \mathbf{S} \}.$

Question For any $R \subseteq \Pi_3$ what is $\#\Pi_n(R)$?

Theorem (Sagan, 2006)

$$\#\Pi_n(13/2) = 2^{n-1}$$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Avoidance of Partitions of a Three Element Set

Adam M. Goyt

Definition $\sigma \in \prod_n$ is layered if $\sigma = 12 \dots i/i + 1 \dots j/ \dots /k + 1 \dots n$.

Avoidance of Partitions of a Three Element Set

Adam M. Goyt Department of Mathematics Michigan State University East Lansing, MI 48824-1027 goytadam@msu.edu www.math.msu.edu

・ロト・西ト・ヨト・ヨー もんの

Definition $\sigma \in \prod_n \text{ is layered if } \sigma = 12 \dots i/i + 1 \dots j/ \dots /k + 1 \dots n.$

Example 123/45/6/78 Avoidance of Partitions of a Three Element Set

Adam M. Goyt Department of Mathematics Michigan State University East Lansing, MI 48824-1027 goytadam@msu.edu www.math.msu.edu

・ロット・日・・日・・日・ シック・

Definition $\sigma \in \prod_n \text{ is layered if } \sigma = 12 \dots i/i + 1 \dots j/ \dots /k + 1 \dots n.$

Example 123/45/6/78

Definition

A composition of an integer *n* is an ordered family $n_1, n_2, ..., n_k$ such that $n_1 + n_2 + \cdots + n_k = n$. The n_i are called parts.

・ コ ト ・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

Avoidance of Partitions of a Three Element Set

Theorem (Sagan, 2006)

$$\#\Pi_n(13/2) = 2^{n-1},$$

$$\Pi_n(13/2) = \{\sigma \in \Pi_n : \sigma \text{ is layered}\}.$$

Avoidance of Partitions of a Three Element Set

Adam M. Goyt Department of Mathematics Michigan State University East Lansing, MI 48824-1027 goytadam@msu.edu www.math.msu.edu

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Theorem (Sagan, 2006)

$$\#\Pi_n(13/2)=2^{n-1},$$

 $\Pi_n(13/2)=\{\sigma\in\Pi_n:\sigma ext{ is layered}\}$

Proof: Let $\sigma = B_1/B_2/.../B_k \in \prod_n(13/2)$, and let $m = \max B_1$. By the canonical ordering $1 = \min B_1$. If 1 < a < m and $a \notin B_1$ then 1m/a is a copy of 13/2. Thus, $B_1 = \{1, 2, ..., m\}$. Repeat this process for the remaining blocks to see that σ must be layered.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへつ

Avoidance of Partitions of a Three Element Set

Theorem (Sagan, 2006)

$$\#\Pi_n(13/2)=2^{n-1},$$

 $\Pi_n(13/2)=\{\sigma\in\Pi_n:\sigma \text{ is layered}\}.$

Proof: Let $\sigma = B_1/B_2/.../B_k \in \prod_n(13/2)$, and let $m = \max B_1$. By the canonical ordering $1 = \min B_1$. If 1 < a < m and $a \notin B_1$ then 1m/a is a copy of 13/2. Thus, $B_1 = \{1, 2, ..., m\}$. Repeat this process for the remaining blocks to see that σ must be layered. The number of compositions of n is known to be 2^{n-1} . There is an easy bijection between layered partitions and compositions of n, given by

 $B_1/B_2/\ldots/B_k\mapsto n_1+n_2+\cdots+n_k$ with $\#B_i=n_i$.

Avoidance of Partitions of a Three Element Set

We say that $\sigma = B_1/B_2/.../B_k$ is a matching if $\#B_i \le 2$ for all *i*.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Avoidance of Partitions of a Three Element Set

Adam M. Goyt

We say that $\sigma = B_1/B_2/.../B_k$ is a matching if $\#B_i \le 2$ for all *i*.

Theorem (G., 2006)

$$\#\Pi_n(13/2, 123) = F_n, \Pi_n(13/2, 123) = \{ \sigma = B_1/B_2/ \dots / B_k \in \Pi_n : \sigma \text{ is a layered matching} \}.$$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Avoidance of Partitions of a Three Element Set

Adam M. Goyt

We say that $\sigma = B_1/B_2/.../B_k$ is a matching if $\#B_i \le 2$ for all *i*.

Theorem (G., 2006)

$$\#\Pi_n(13/2, 123) = F_n, \Pi_n(13/2, 123) = \{\sigma = B_1/B_2/.../B_k \in \Pi_n : \sigma \text{ is a layered matching} \}$$

Proof: These are in bijection with compositions of *n* with part sizes at most 2, which are known to be counted by the Fibonacci numbers. \diamond

Avoidance of Partitions of a Three Element Set

Adam M. Goyt

Avoidance of Partitions of a Three Element Set

Adam M. Goyt Department of Mathematics Michigan State University East Lansing, MI 48824-1027 goytadam@msu.edu www.math.msu.edu

Generalized Partition Patterns

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

History and Notation

Babson and Steingrímsson (2000).

Avoidance of Partitions of a Three Element Set

Adam M. Goyt Department of Mathematics Michigan State University East Lansing, MI 48824-1027 goytadam@msu.edu www.math.msu.edu

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● のへで

History and Notation

Babson and Steingrímsson (2000).

Always write $\sigma = B_1/B_2/\ldots/B_k$ so that

 $\min B_1 < \min B_2 < \cdots < \min B_k.$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Avoidance of Partitions of a Three Element Set

History and Notation

Babson and Steingrímsson (2000).

Always write $\sigma = B_1/B_2/\ldots/B_k$ so that

 $\min B_1 < \min B_2 < \cdots < \min B_k.$

Consider the pattern $\pi = 13/2$.

Two ways to generalize this:

- Adjacent Blocks: Pattern 13|2
- Adjacent Elements: Pattern 13/2

Avoidance of Partitions of a Three Element Set

Consider the partition $\sigma = 137/26/45$.

Avoidance of Partitions of a Three Element Set

Adam M. Goyt

Department of Mathematics Michigan State University East Lansing, MI 48824-1027 goytadam@msu.edu www.math.msu.edu

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● ○ ○ ○

Consider the partition $\sigma = 137/26/45$.

Then 17/2 is a copy of 13|2, but 17/4 is not,

Avoidance of Partitions of a Three Element Set

Adam M. Goyt

Department of Mathematics Michigan State University East Lansing, MI 48824-1027 goytadam@msu.edu www.math.msu.edu

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Consider the partition $\sigma = 137/26/45$.

Then 17/2 is a copy of 13|2, but 17/4 is not,

and 13/2 is a copy of 13/2, but 17/2 is not.

Avoidance of Partitions of a Three Element Set

> Adam M. Goyt Department of

Mathematics Michigan State University East Lansing, MI 48824-1027 goytadam@msu.edu www.math.msu.edu

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Consider the partition $\sigma = 137/26/45$.

Then 17/2 is a copy of 13|2, but 17/4 is not,

and 13/2 is a copy of 13/2, but 17/2 is not.

Also, 26/3 is a copy of 13|2.

Avoidance of Partitions of a Three Element Set

> Adam M. Goyt Department of

Mathematics Michigan State University East Lansing, MI 48824-1027 goytadam@msu.edu www.math.msu.edu

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Lemma

The following are true for generalized partitions:

$$\begin{array}{rcl} \Pi_n(1/2/3) &=& \Pi_n(1|2/3) &=& \Pi_n(1/2|3) &=& \Pi_n(1|2|3), \\ \Pi_n(1/23) &=& \Pi_n(1|23) &=& \Pi_n(1/23) &=& \Pi_n(1|23), \\ \Pi_n(13/2) &=& \Pi_n(\widehat{13}/2) &=& \Pi_n(13|2) &=& \Pi_n(\widehat{13}|2), \\ \Pi_n(123) &=& \Pi_n(\widehat{12}3) &=& \Pi_n(\widehat{12}3) &=& \Pi_n(\widehat{12}3), \\ \Pi_n(12/3) &=& \Pi_n(\widehat{12}/3), \\ \Pi_n(12|3) &=& \Pi_n(\widehat{12}|3). \end{array}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● のへで

Avoidance of Partitions of a Three Element Set

Adam M. Goyt

Proposition

Let $S \subseteq \Pi_3 - \{12/3\}$ then $\Pi_n(S \cup \{12|3\}) = \Pi_n(S \cup \{12/3\})$ unless $S = \emptyset$ or $\{123\}$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Avoidance of Partitions of a Three Element Set

Adam M. Goyt Department of

Proposition Let $S \subseteq \Pi_3 - \{12/3\}$ then $\Pi_n(S \cup \{12|3\}) = \Pi_n(S \cup \{12/3\})$ unless $S = \emptyset$ or $\{123\}$.

Lemma

We have that $\sigma \in \prod_n (12|3)$ if and only if whenever a block B_t of σ satisfies $\#B_t \ge 2$, then

$$\#B_{t-1} = 1$$
 and $\#B_{t+1} = 1$.

Furthermore, if $B_{t+1} = \{a\}$ then a < b for every $b \in B_t - \{\min B_t\}$.

Avoidance of Partitions of a Three Element Set

Adam M. Goyt Department of Mathematics Michigan State University East Lansing, MI 48824-1027 goytadam@msu.edu www.math.msu.edu

うせん 同一人間を入所する (四) (1)

Definition Let $a_n = \# \prod_n (12|3)$ and $f(x) = \sum_{n \ge 0} a_n \frac{x^n}{n!}$ be the corresponding exponential generating function.

Adam M. Goyt

Department of Mathematics Michigan State University East Lansing, MI 48824-1027 goytadam@msu.edu www.math.msu.edu

・ロト・西ト・山田・山田・山下

Definition Let $a_n = \# \prod_n (12|3)$ and $f(x) = \sum_{n \ge 0} a_n \frac{x^n}{n!}$ be the corresponding exponential generating function.

Proposition

We have that

$$a_n = a_{n-1} + 1 + \sum_{k=1}^{n-2} {n-2 \choose k} a_{n-k-2}$$

with the initial conditions $a_0 = 1$ and $a_1 = 1$, and f(x) satisfies the differential equation

$$y'' = y' + y(e^x - 1) + e^x$$
.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへつ

Avoidance of Partitions of a Three Element Set

> Adam M. Goyt Department of

The substitution $y = ue^{x/2}$ simplifies the equation to

$$u'' = u(e^{x} - \frac{3}{4}) + e^{x/2}$$

Using Maple we obtain the solution

$$u = C_1 \cdot I_{\sqrt{-3}}(2e^{x/2}) + C_2 \cdot K_{\sqrt{-3}}(e^{x/2}) + 2I_{\sqrt{-3}}(2e^{x/2}) \int K_{\sqrt{-3}}(e^{x/2}) dx - 2K_{\sqrt{-3}}(e^{x/2}) \int I_{\sqrt{-3}}(2e^{x/2})e^{x/2} dx,$$

where $I_n(z)$ and $K_n(z)$ are the modified Bessel functions of the first and second kind respectively. Avoidance of Partitions of a Three Element Set

> Adam M. Goyt Department of

Avoidance of Partitions of a Three Element Set

Adam M. Goyt Department of

Mathematics Michigan State University East Lansing, MI 48824-1027 goytadam@msu.edu www.math.msu.edu

Set Partition Statistics

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

History and Definitions

- Carlitz (1933, 1948) and Gould (1961) introduced two different *q*-Stirling numbers of the second kind.
- Milne (1978) determined an inversion statistic whose distribution is given by these *q*-Stirling numbers of the second kind.
- Sagan (1991) shows that a maj statistic for set partitions also has this distribution.
- Wachs and White (1991) studied four statistics, which are variants of the inversion statistic of Milne and also have the *q*-Stirling numbers of the second kind distribution.

Avoidance of Partitions of a Three Element Set

Adam M. Goyt

History and Definitions

- Carlitz (1933, 1948) and Gould (1961) introduced two different *q*-Stirling numbers of the second kind.
- Milne (1978) determined an inversion statistic whose distribution is given by these q-Stirling numbers of the second kind.
- Sagan (1991) shows that a maj statistic for set partitions also has this distribution.
- Wachs and White (1991) studied four statistics, which are variants of the inversion statistic of Milne and also have the *q*-Stirling numbers of the second kind distribution.

Question

Can these statistics be written in terms of generalized patterns?

Avoidance of Partitions of a Three Element Set

Adam M. Goyt

Let $\sigma = B_1/B_2/.../B_k$, and $b \in B_j$ then (b, B_i) is

- an inversion if j < i and $b > \min B_i$,
- a descent if j = i − 1 and b > min B_i. Let d_i be the number of descents of σ of the form (b, B_i).

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Avoidance of Partitions of a Three Element Set

Adam M. Goyt

Let $\sigma = B_1/B_2/.../B_k$, and $b \in B_j$ then (b, B_i) is

- an inversion if j < i and $b > \min B_i$,
- a descent if j = i 1 and b > min B_i. Let d_i be the number of descents of σ of the form (b, B_i).

Example

If $\sigma = 137/26/45$ then $(7, \{4, 5\})$ is an inversion since 7 > 4, and $(3, \{2, 6\})$ is a descent, since 3 appears in the block immediately before $\{2, 6\}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへつ

Avoidance of Partitions of a Three Element Set

Adam M. Goyt

Let $\sigma = B_1/B_2/.../B_k$, and $b \in B_j$ then (b, B_i) is

- an inversion if j < i and $b > \min B_i$,
- a descent if j = i 1 and b > min B_i. Let d_i be the number of descents of σ of the form (b, B_i).

Example

If $\sigma = 137/26/45$ then $(7, \{4, 5\})$ is an inversion since 7 > 4, and $(3, \{2, 6\})$ is a descent, since 3 appears in the block immediately before $\{2, 6\}$.

Definition

The inversion statistic, $inv(\sigma)$, is the number of inversions of σ and the major index,

$$maj(\sigma) = \sum id_i = d_1 + 2d_2 + \cdots + kd_k.$$

Avoidance of Partitions of a Three Element Set

Adam M. Goyt

We will treat a generalized pattern ρ as a function $\rho: \bigcup_{n\geq 1} \prod_n \to \mathbb{Z}$ where $\rho(\sigma)$ is the number of copies of ρ in σ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Avoidance of Partitions of a Three Element Set

Adam M. Goyt

We will treat a generalized pattern ρ as a function $\rho : \bigcup_{n \ge 1} \prod_n \to \mathbb{Z}$ where $\rho(\sigma)$ is the number of copies of ρ in σ .

Theorem (G. 2006) For any $\sigma \in \Pi_n$

$$inv(\sigma) = (\overrightarrow{13}/\overrightarrow{2})(\sigma)$$

$$maj(\sigma) = (\overrightarrow{13}|\overrightarrow{2}+\overrightarrow{1}/\overrightarrow{24}|\overrightarrow{3}).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Avoidance of Partitions of a Three Element Set

> Adam M. Goyt Department of

Question

How are some of these statistics distributed on the sets $\Pi_n(13/2)$ and $\Pi_n(13/2, 123)$?

Avoidance of Partitions of a Three Element Set

Adam M. Goyt

Department of Mathematics Michigan State University East Lansing, MI 48824-1027 goytadam@msu.edu www.math.msu.edu

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Question

How are some of these statistics distributed on the sets $\Pi_n(13/2)$ and $\Pi_n(13/2, 123)$?

Observation

Only the statistics Is and rb of Wachs and White give nontrivial distributions over $\Pi_n(13/2)$ and $\Pi_n(13/2, 123)$.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Avoidance of Partitions of a Three Element Set

Adam M. Goyt

Question

How are some of these statistics distributed on the sets $\Pi_n(13/2)$ and $\Pi_n(13/2, 123)$?

Observation

Only the statistics Is and rb of Wachs and White give nontrivial distributions over $\Pi_n(13/2)$ and $\Pi_n(13/2, 123)$.

Definition

Let the q-analogue $F_n(q)$ of the Fibonacci numbers be given by the recursion

$$F_n(q) = q^{n-1}F_{n-1}(q) + q^{n-2}F_{n-2}(q)$$

with initial conditions $F_0(q) = 1$ and $F_1(q) = 1$.

Avoidance of Partitions of a Three Element Set

Adam M. Goyt

Theorem (G.-Sagan)

$$\sum_{\pi\in \Pi_n(13/2)} q^{ls(\pi)} = \sum_{\pi\in \Pi_n(13/2)} q^{rb(\pi)} = \prod_{k=1}^{n-1} (1+q^k),$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● のへで

Avoidance of Partitions of a Three Element Set

Theorem (G.-Sagan)

$$\sum_{\pi\in \Pi_n(13/2)} q^{ls(\pi)} = \sum_{\pi\in \Pi_n(13/2)} q^{rb(\pi)} = \prod_{k=1}^{n-1} (1+q^k),$$

$$\sum_{\pi\in \Pi_n(13/2,123)} q^{ls(\pi)} = \sum_{\pi\in \Pi_n(13/2,123)} q^{rb(\pi)} = F_n(q).$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● ○ ○ ○

Avoidance of Partitions of a Three Element Set

Related to *q*-Fibonacci numbers of Carlitz (1974,1975) and Cigler (2003,2004).

Avoidance of Partitions of a Three Element Set

Adam M. Goyt

Department of Mathematics Michigan State University East Lansing, MI 48824-1027 goytadam@msu.edu www.math.msu.edu

・ロト・西ト・田・・田・ うんぐ

Related to *q*-Fibonacci numbers of Carlitz (1974,1975) and Cigler (2003,2004).

Well known identity for the Fibonacci numbers:

$$F_n = \sum_{2k \le n} \binom{n-k}{k}.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Avoidance of Partitions of a Three Element Set

> Adam M. Goyt Department of

Related to *q*-Fibonacci numbers of Carlitz (1974,1975) and Cigler (2003,2004).

Well known identity for the Fibonacci numbers:

$$F_n = \sum_{2k \le n} \binom{n-k}{k}.$$

Theorem (Carlitz, G.-Sagan)

$$F_n(q) = \sum_{2k \le n} q^{\binom{n}{2} + k^2 - nk} \left[\begin{array}{c} n-k \\ k \end{array} \right]_q$$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Avoidance of Partitions of a Three Element Set

Adam M. Goyt

Future Work

- Avoidance of both patterns from Π_3 and from Π_4 .
- Avoidance of Infinite families of patterns (Sagan, 2006).
- Questions of Containment and Packing analogous to work initiated by (Price, 1997) for permutations.
- Is there a way to classify statistics giving rise to the q-Stirling numbers of the second kind as Babson and Steingrímsson did for Mahonian statistics?
- What sort of distributions arrise from studying the aforementioned statistics on other restricted sets of partitions? (Currently being studied by G.)
- The definition of containment of a set partition produces a nice partial ordering. What kind of structure does this poset have? (Currently being investigated by G.)

Avoidance of Partitions of a Three Element Set

Adam M. Goyt

Avoidance of Partitions of a Three Element Set

Adam M. Goyt Department of Mathematics Michigan State University East Lansing, MI 48824-1027 goytadam@msu.edu www.math.msu.edu

Thank You!

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ● のへで