A Stanley-Wilf/Marcus-Tardos Type Result for Ordered Set Partitions

Adam M. Goyt Joint with Anant P. Godbole and Lara K. Pudwell

Minnesota State University Moorhead web.mnstate.edu/goytadam/ goytadam@mnstate.edu

July 1, 2013

A.M. Goyt (MSUM)

Marcus-Tardos

July 1, 2013 1 / 29

- Perm Matrices and the F-H Conjecture
- Proof that $FHC \Longrightarrow SWC$

Outline

A Walk Down Memory Lane

- Perm Matrices and the F-H Conjecture
- Proof that FHC \implies SWC

A Marcus-Tardos Result for Ordered Set Partitions

(日) (同) (三) (三)

Pattern Avoidance in Permutations

Definition

Let $p = p_1 p_2 \cdots p_n \in S_n$, the symmetric group on n elements, and $q \in S_k$. We say that p contains q if there is a subsequence of p, $p' = p_{i_1} p_{i_2} \cdots p_{i_k}$ with p' order isomorphic to q. Otherwise we say that p avoids q.

Pattern Avoidance in Permutations

Definition

Let $p = p_1 p_2 \cdots p_n \in S_n$, the symmetric group on n elements, and $q \in S_k$. We say that p contains q if there is a subsequence of p, $p' = p_{i_1} p_{i_2} \cdots p_{i_k}$ with p' order isomorphic to q. Otherwise we say that p avoids q.

Definition

Let $p \in S_k$. Define $S_n(p)$ to be the set of permutations of [n] that avoid p.

The Stanley-Wilf Conjecture (Arratia Version [1])

In the early 1990's, Richard Stanley and Herbert Wilf conjectured that for each permutation p there is some $C \in [1, \infty)$ such that

$$\limsup_{n\to\infty}|\mathcal{S}_n(p)|^{1/n}=C.$$

That is, $|S_n(p)|$ has exponential growth.

The Stanley-Wilf Conjecture (Arratia Version [1])

In the early 1990's, Richard Stanley and Herbert Wilf conjectured that for each permutation p there is some $C \in [1, \infty)$ such that

$$\limsup_{n\to\infty}|\mathcal{S}_n(p)|^{1/n}=C.$$

That is, $|S_n(p)|$ has exponential growth.

Theorem (Marcus-Tardos 2004 [4])

For each permutation p there is a constant $C \in [1,\infty)$ such that

$$\limsup_{n\to\infty}|\mathcal{S}_n(p)|^{1/n}=C.$$

Permutation Matrices

Definition

For any permutation $p = p_1 p_2 \cdots p_n \in S_n$, let $M_p = [m_{ij}]$ be the 0-1 matrix with $m_{p_ii} = 1$ for $1 \le i \le n$ and the remaining entries 0.

Permutation Matrices

Definition

For any permutation $p = p_1 p_2 \cdots p_n \in S_n$, let $M_p = [m_{ij}]$ be the 0-1 matrix with $m_{p_i i} = 1$ for $1 \le i \le n$ and the remaining entries 0.

Example

The permutation 1342 has associated matrix

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Definition

Let A and P be 0-1 matrices. We say that A contains the $k \times \ell$ matrix $P = [p_{ij}]$ if there exists a $k \times \ell$ submatrix $B = [b_{ij}]$ of A with $b_{ij} = 1$ whenever $p_{ij} = 1$. Otherwise we say that A avoids P.

(日) (同) (三) (三)

Definition

Let A and P be 0-1 matrices. We say that A contains the $k \times \ell$ matrix $P = [p_{ij}]$ if there exists a $k \times \ell$ submatrix $B = [b_{ij}]$ of A with $b_{ij} = 1$ whenever $p_{ij} = 1$. Otherwise we say that A avoids P.

Example

$$A \ copy \ of \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \ in \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix}$$

イロト イ押ト イヨト イヨト

Lemma

If $p \in S_n$ has matrix P and $q \in S_k$ has matrix Q then p avoids q iff P avoids Q.

Lemma

If $p \in S_n$ has matrix P and $q \in S_k$ has matrix Q then p avoids q iff P avoids Q.

Conjecture (F-H 1992, Proved by Marcus and Tardos in 2004) Let P be a permutation matrix. Let f(n, P) be the maximal number of 1's in an $n \times n$ 0-1 matrix avoiding P. Then

f(n,P)=O(n).

Lemma

If $p \in S_n$ has matrix P and $q \in S_k$ has matrix Q then p avoids q iff P avoids Q.

Conjecture (F-H 1992, Proved by Marcus and Tardos in 2004)

Let P be a permutation matrix. Let f(n, P) be the maximal number of 1's in an $n \times n$ 0-1 matrix avoiding P. Then

$$f(n,P)=O(n).$$

Theorem (Klazar 2000 [3])

The Füredi-Hajnal Conjecture implies the Stanley-Wilf Conjecture.

Partitioning and Reducing a Matrix

Example

n = 5 and k = 2.

$$A = \begin{bmatrix} 1 & 0 & | & 1 & 0 & | & 0 \\ 0 & 0 & | & 1 & 0 & 0 \\ \hline 0 & 1 & 0 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 & 1 \\ \hline 1 & 1 & | & 1 & 0 & 1 \end{bmatrix}$$

Lemma

A.M. Goyt (MSUM)

-

• • • • • • • • • • • •

Partitioning and Reducing a Matrix

Example

n = 5 and k = 2.

$$A = \begin{bmatrix} 1 & 0 & | & 1 & 0 & | & 0 \\ 0 & 0 & | & 1 & 0 & 0 \\ \hline 0 & 1 & 0 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 0 & 1 \\ \hline 1 & 1 & | & 1 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} = B$$

Lemma

A.M. Goyt (MSUM)

July 1, 2013 9 / 29

-

• • • • • • • • • • • •

Partitioning and Reducing a Matrix

Example

n = 5 and k = 2.

$$A = \begin{bmatrix} 1 & 0 & | & 1 & 0 & | & 0 \\ 0 & 0 & 1 & 0 & 0 \\ \hline 0 & 1 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 & 1 \\ \hline 1 & 1 & | & 1 & 0 & | & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} = B$$

Lemma

Let P be a permutation matrix. If A avoids P then so does B.

< ∃ > <

Observation: Let p be a permutation and P its associated matrix. Let $T_n(P)$ be the set of 0-1 matrices avoiding P. Then $|S_n(p)| \le |T_n(P)|$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Observation: Let p be a permutation and P its associated matrix. Let $T_n(P)$ be the set of 0-1 matrices avoiding P. Then $|S_n(p)| \le |T_n(P)|$. **Proof that FHC** \implies **SWC:** Let P be a permutation matrix and suppose that f(n, P) = O(n). We have that

 $|T_{2n}(P)| \leq |T_n(P)| \cdot 15^{f(n,P)}.$

Observation: Let p be a permutation and P its associated matrix. Let $T_n(P)$ be the set of 0-1 matrices avoiding P. Then $|S_n(p)| \le |T_n(P)|$. **Proof that FHC** \implies **SWC:** Let P be a permutation matrix and suppose that f(n, P) = O(n). We have that

$$|T_{2n}(P)| \leq |T_n(P)| \cdot 15^{f(n,P)}.$$

 Let A ∈ T_{2n}(P), and form B by partitioning A into 2 × 2 blocks and replacing blocks of all zeros by 0, and any other block by a 1.

Observation: Let p be a permutation and P its associated matrix. Let $T_n(P)$ be the set of 0-1 matrices avoiding P. Then $|S_n(p)| \le |T_n(P)|$. **Proof that FHC** \implies **SWC:** Let P be a permutation matrix and suppose that f(n, P) = O(n). We have that

$$|T_{2n}(P)| \leq |T_n(P)| \cdot 15^{f(n,P)}.$$

- Let A ∈ T_{2n}(P), and form B by partitioning A into 2 × 2 blocks and replacing blocks of all zeros by 0, and any other block by a 1.
- Each $B \in T_n(P)$ has at most $15^{f(n,P)}$ preimages.

A.M. Goyt (MSUM)

Outline

1) A Walk Down Memory Lane

- Perm Matrices and the F-H Conjecture
- Proof that FHC \implies SWC

Ordered Set Partitions

3 A Marcus-Tardos Result for Ordered Set Partitions

(日) (同) (三) (三)

Set Partitions

Definition

Let $[n] = \{1, 2, ..., n\}$ a partition, π , of [n], $\pi \vdash [n]$ is a family of sets $B_1, B_2, ..., B_k$, called blocks, such that $B_1 \uplus B_2 \uplus \cdots \uplus B_k = [n]$. We write

$$\pi=B_1/B_2/\ldots/B_k,$$

where min $B_1 < \min B_2 < \cdots < \min B_k$.

(日) (同) (三) (三)

Set Partitions

Definition

Let $[n] = \{1, 2, ..., n\}$ a partition, π , of [n], $\pi \vdash [n]$ is a family of sets $B_1, B_2, ..., B_k$, called blocks, such that $B_1 \uplus B_2 \uplus \cdots \uplus B_k = [n]$. We write

$$\pi=B_1/B_2/\ldots/B_k,$$

where min $B_1 < \min B_2 < \cdots < \min B_k$.

Example

$$\pi = 13/247/56 \vdash [7].$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Ordered Set Partitions

Definition

An ordered partition π of [n] is a partition of [n] where we specify an order for the blocks.

Ordered Set Partitions

Definition

An ordered partition π of [n] is a partition of [n] where we specify an order for the blocks.

Definition

Let $\mathcal{OP}_{n,k}$ be the set of ordered partitions of [n] with k blocks.

Ordered Set Partitions

Definition

An ordered partition π of [n] is a partition of [n] where we specify an order for the blocks.

Definition

Let $\mathcal{OP}_{n,k}$ be the set of ordered partitions of [n] with k blocks.

Notice that the set of permutations of [n], S_n , is in bijection with $\mathcal{OP}_{n,n}$.

Patterns in Ordered Partitions

Definition

An ordered partition $\sigma = B_1/B_2/.../B_k \in OP_{n,k}$ is said to contain a copy of a permutation $p = p_1p_2...p_m$ if there is a sequence of elements $a = a_{i_1}a_{i_2}...a_{i_m}$ with $a_{i_j} \in B_{i_j}$ for $1 \le j \le m$ with $i_1 < i_2 < ... < i_m$ such that a is order isomorphic to p. Otherwise we say σ avoids p.

Patterns in Ordered Partitions

Definition

An ordered partition $\sigma = B_1/B_2/.../B_k \in OP_{n,k}$ is said to contain a copy of a permutation $p = p_1p_2\cdots p_m$ if there is a sequence of elements $a = a_{i_1}a_{i_2}\cdots a_{i_m}$ with $a_{i_j} \in B_{i_j}$ for $1 \le j \le m$ with $i_1 < i_2 < \cdots < i_m$ such that a is order isomorphic to p. Otherwise we say σ avoids p.

Example

For example let $\pi = 56/247/13$. 523 forms a copy of 312, and 573 forms a copy of 231.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Patterns in Ordered Partitions

Definition

An ordered partition $\sigma = B_1/B_2/.../B_k \in OP_{n,k}$ is said to contain a copy of a permutation $p = p_1p_2\cdots p_m$ if there is a sequence of elements $a = a_{i_1}a_{i_2}\cdots a_{i_m}$ with $a_{i_j} \in B_{i_j}$ for $1 \le j \le m$ with $i_1 < i_2 < \cdots < i_m$ such that a is order isomorphic to p. Otherwise we say σ avoids p.

Example

For example let $\pi = 56/247/13$. 523 forms a copy of 312, and 573 forms a copy of 231. However, π avoids the permutations 123 and 132.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

A Walk Down Memory Lane

- Perm Matrices and the F-H Conjecture
- Proof that FHC \implies SWC

Ordered Set Partitions

A Marcus-Tardos Result for Ordered Set Partitions

Theorem (Godbole-G-Pudwell [2])

Let $p \in S_m$. Then there is some constant $C \in [1, \infty)$ such that

$$\lim_{n\to\infty} |\mathcal{OP}_{n,k}(p)|^{1/n} = C.$$

Theorem (Godbole-G-Pudwell [2])

Let $p \in \mathcal{S}_m$. Then there is some constant $C \in [1, \infty)$ such that

$$\lim_{n\to\infty} |\mathcal{OP}_{n,k}(p)|^{1/n} = C.$$

•
$$|\mathcal{OP}_{n,n}(123)| = C_n \sim \frac{4^n}{n^{3/2}\sqrt{\pi}}$$

• $|\mathcal{OP}_{n,n-1}(123)| \sim K \cdot \frac{4^n}{\sqrt{n}}$

Holey Ordered Partitions Batman!

Definition

We will say a holey ordered partition of [n] is an ordered partition of [n], where some of the blocks are allowed to remain empty. Let $\mathcal{OP}_{n,k}^*$ be the set of holey ordered partitions of [n] with k blocks.

Holey Ordered Partitions Batman!

Definition

We will say a holey ordered partition of [n] is an ordered partition of [n], where some of the blocks are allowed to remain empty. Let $\mathcal{OP}_{n,k}^*$ be the set of holey ordered partitions of [n] with k blocks.

Example

 $\pi = \emptyset/26/\emptyset/\emptyset/137/4/\emptyset/5$ is a holey ordered partition of [7] with 8 blocks.

Holey Ordered Partitions Batman!

Definition

We will say a holey ordered partition of [n] is an ordered partition of [n], where some of the blocks are allowed to remain empty. Let $\mathcal{OP}_{n,k}^*$ be the set of holey ordered partitions of [n] with k blocks.

Example

 $\pi = \emptyset/26/\emptyset/\emptyset/137/4/\emptyset/5$ is a holey ordered partition of [7] with 8 blocks.

Definition

Let $p \in S_m$. We let $\mathcal{OP}_{n,k}^*(p)$ be the set of holey ordered partitions avoiding p.

Theorem

For each $p \in S_m$, there is some constant $C \in [1, \infty)$ such that

$$\lim_{n\to\infty} |\mathcal{OP}^*_{n,k}(p)|^{1/n} = C.$$

A.M. Goyt (MSUM)

Marcus-Tardos

July 1, 2013 18 / 29

Proof: Let $p \in S_m$, we define an injection

$$f: \mathcal{OP}^*_{a+b,k}(p) \to \mathcal{OP}^*_{a,k}(p) imes \mathcal{OP}^*_{b,k}(p).$$

Example

 $2/18/\emptyset/357/4/6$ \downarrow $(2/1/\emptyset/35/4/\emptyset, \emptyset/8/\emptyset/7/\emptyset/6)$ \downarrow $(2/1/\emptyset/35/4/\emptyset, \emptyset/3/\emptyset/2/\emptyset/1)$

A.M. Goyt (MSUM)

Proof: Let $p \in S_m$, we define an injection

$$f: \mathcal{OP}^*_{a+b,k}(p) \to \mathcal{OP}^*_{a,k}(p) imes \mathcal{OP}^*_{b,k}(p).$$

Example

$$2/18/\emptyset/357/4/6$$

$$\downarrow$$

$$(2/1/\emptyset/35/4/\emptyset, \emptyset/8/\emptyset/7/\emptyset/6)$$

$$\downarrow$$

$$(2/1/\emptyset/35/4/\emptyset, \emptyset/3/\emptyset/2/\emptyset/1)$$

So

$$|\mathcal{OP}^*_{a+b,k}(p)| \leq |\mathcal{OP}^*_{a,k}(p)| \cdot |\mathcal{OP}^*_{b,k}(p)|.$$

A.M. Goyt (MSUM)

July 1, 2013 19 / 29

This gives us that $\log(|\mathcal{OP}^*_{a+b,k}(p)|) \leq \log(|\mathcal{OP}^*_{a,k}(p)|) + \log(|\mathcal{OP}^*_{b,k}(p)|)$, so $\log(|\mathcal{OP}^*_{n,k}(p)|)$ is a subadditive function.

This gives us that $\log(|\mathcal{OP}^*_{a+b,k}(p)|) \leq \log(|\mathcal{OP}^*_{a,k}(p)|) + \log(|\mathcal{OP}^*_{b,k}(p)|), \text{ so}$ $\log(|\mathcal{OP}^*_{n,k}(p)|) \text{ is a subadditive function.}$ By Fekete's Lemma [5] we have $\lim_{n\to\infty} \frac{\log(|\mathcal{OP}^*_{n,k}(p)|)}{n} \in [0,\infty).$

This gives us that $\log(|\mathcal{OP}^*_{a+b,k}(p)|) \leq \log(|\mathcal{OP}^*_{a,k}(p)|) + \log(|\mathcal{OP}^*_{b,k}(p)|), \text{ so } \log(|\mathcal{OP}^*_{n,k}(p)|) \text{ is a subadditive function.}$ By Fekete's Lemma [5] we have $\lim_{n \to \infty} \frac{\log(|\mathcal{OP}^*_{n,k}(p)|)}{n} \in [0,\infty).$ Thus,

$$\lim_{n\to\infty} |\mathcal{OP}^*_{n,k}(p)|^{1/n} \in [1,\infty).\square$$

Theorem (Godbole-G-Pudwell [2]) Let $p \in S_m$. Then there is some constant $C \in [1, \infty)$ such that

$$\lim_{n\to\infty} |\mathcal{OP}_{n,k}(p)|^{1/n} = C.$$

Theorem (Godbole-G-Pudwell [2]) Let $p \in S_m$. Then there is some constant $C \in [1, \infty)$ such that

$$\lim_{n\to\infty} |\mathcal{OP}_{n,k}(p)|^{1/n} = C.$$

We will show that

$$\frac{|\mathcal{OP}_{n,k}^*(p)|}{(k+1)^{2k}} \leq |\mathcal{OP}_{n,k}(p)| \leq |\mathcal{OP}_{n,k}^*(p)|.$$

Theorem (Godbole-G-Pudwell [2]) Let $p \in S_m$. Then there is some constant $C \in [1, \infty)$ such that

$$\lim_{n\to\infty} |\mathcal{OP}_{n,k}(p)|^{1/n} = C.$$

We will show that

$$rac{|\mathcal{OP}^*_{n,k}(\pmb{p})|}{(k+1)^{2k}} \leq |\mathcal{OP}_{n,k}(\pmb{p})| \leq |\mathcal{OP}^*_{n,k}(\pmb{p})|.$$

For $n \ge k$, we will describe an injection

$$\psi: \mathcal{OP}^*_{n,k}(p) \to \mathcal{OP}_{n,k}(p) \times \{0,1,\ldots,k\}^{2k}.$$

Suppose $p \in S_m$ and p does not end in $m, \sigma \in \mathcal{OP}^*_{n,k}(p)$ with $n \ge k$.

Suppose $p \in S_m$ and p does not end in $m, \sigma \in \mathcal{OP}^*_{n,k}(p)$ with $n \ge k$. We will describe an algorithm that gives $\psi(\sigma) = (\pi, w)$, where $\pi \in \mathcal{OP}_{n,k}(p)$ and $w \in \{0, 1, \ldots, k\}^{2k}$ that satisfies:

Suppose $p \in S_m$ and p does not end in m, $\sigma \in \mathcal{OP}^*_{n,k}(p)$ with $n \ge k$.

We will describe an algorithm that gives $\psi(\sigma) = (\pi, w)$, where $\pi \in \mathcal{OP}_{n,k}(p)$ and $w \in \{0, 1, \dots, k\}^{2k}$ that satisfies:

• At each step the partition is *p*-avoiding.

Suppose $p \in S_m$ and p does not end in $m, \sigma \in \mathcal{OP}^*_{n,k}(p)$ with $n \ge k$.

We will describe an algorithm that gives $\psi(\sigma) = (\pi, w)$, where $\pi \in \mathcal{OP}_{n,k}(p)$ and $w \in \{0, 1, \dots, k\}^{2k}$ that satisfies:

- At each step the partition is *p*-avoiding.
- The final partition has no holes.

Suppose $p \in S_m$ and p does not end in $m, \sigma \in \mathcal{OP}^*_{n,k}(p)$ with $n \ge k$.

We will describe an algorithm that gives $\psi(\sigma) = (\pi, w)$, where $\pi \in \mathcal{OP}_{n,k}(p)$ and $w \in \{0, 1, \dots, k\}^{2k}$ that satisfies:

- At each step the partition is *p*-avoiding.
- The final partition has no holes.
- The process is invertible due to the information recorded in w.

Suppose $p \in S_m$ and p does not end in $m, \sigma \in \mathcal{OP}^*_{n,k}(p)$ with $n \ge k$.

We will describe an algorithm that gives $\psi(\sigma) = (\pi, w)$, where $\pi \in \mathcal{OP}_{n,k}(p)$ and $w \in \{0, 1, \dots, k\}^{2k}$ that satisfies:

- At each step the partition is *p*-avoiding.
- The final partition has no holes.
- The process is invertible due to the information recorded in w.

 ^{|OP*_{n,k}(p)|}/_{(k+1)^{2k}} ≤ |OP_{n,k}(p)| ≤ |OP*_{n,k}(p)|.

イロト イポト イヨト イヨト 二日

Suppose $p \in S_m$ and p does not end in $m, \sigma \in \mathcal{OP}^*_{n,k}(p)$ with $n \ge k$.

We will describe an algorithm that gives $\psi(\sigma) = (\pi, w)$, where $\pi \in \mathcal{OP}_{n,k}(p)$ and $w \in \{0, 1, \dots, k\}^{2k}$ that satisfies:

- At each step the partition is *p*-avoiding.
- The final partition has no holes.
- The process is invertible due to the information recorded in w.

 ^{|OP^{*}_{n,k}(p)|}/_{(k+1)^{2k}} ≤ |OP_{n,k}(p)| ≤ |OP^{*}_{n,k}(p)|.
- Since k is fixed $\lim_{n\to\infty} |\mathcal{OP}_{n,k}(p)|^{1/n} = C$ for some $C \in [1,\infty)$.

イロト 不得 とくまとう まし

Let p = 132.

	Partition	W
1	Ø/8/345/Ø/12/6/7	Ø

Let p = 132.

	Partition	W
1	Ø/8/345/Ø/12/6/7	Ø
2	8/345/12/6/7/0/0	2356700

Let p = 132.

	Partition	W
1	Ø/8/345/Ø/12/6/7	Ø
2	8/345/12/6/7/Ø/Ø	2356700
3	Ø/345/12/6/Ø/ <mark>7/8</mark>	2356700

Let p = 132.

	Partition	W
1	Ø/8/345/Ø/12/6/7	Ø
2	<mark>8/345/12/6/7</mark> /∅/∅	2356700
3	$\emptyset/345/12/6/\emptyset/7/8$	2356700
4	<mark>6/34/12/Ø/5/7/8</mark>	2356700

• • • • • • • • • • • •

Let p = 132.

	Partition	W
1	Ø/8/345/Ø/12/6/7	Ø
2	8/345/12/6/7/Ø/Ø	2356700
3	Ø/345/12/ <mark>6</mark> /Ø/7/8	2356700
4	6/34/12/Ø/5/7/8	2356700
5	6/3/12/4/5/7/8	2356700

Let p = 132.

	Partition	W
1	Ø/8/345/Ø/12/6/7	Ø
2	8/345/12/6/7/Ø/Ø	2356700
3	$\emptyset/345/12/6/\emptyset/7/8$	2356700
4	6/34/12/Ø/5/7/8	2356700
5	6/3/12/4/5/7/8	2356700
6	6/3/12/4/5/7/8	23567004202251

• • • • • • • • • • • •

Thank You

Merci!

A.M. Goyt (MSUM)

Marcus-Tardos

■ ◆ ■ ▶ ■ つへの July 1, 2013 29 / 29

R. Arratia, On the Stanley-Wilf conjecture for the number of permutations avoiding a given pattern, Electron. J. Combin. 6 (1999), no. 1, 1-4, http://www.combinatorics.org/Volume_6/Abstracts/v6i1n1

- A. Godbole, A. Goyt, J. Herdan, and L. Pudwell, Pattern Avoidance in Ordered Set Partitions, http://arxiv.org/abs/1212.2530.
- M. Klazar, The FürediHajnal Conjecture Implies the StanleyWilf Conjecture, Formal Power Series and Algebraic Combinatorics, Springer, Berlin, 2000, pp. 250-255.
- A. Marcus and G. Tardos, Excluded permutation matrices and the Stanley-Wilf conjecture, J. Combin. Theory Ser. A, 107 (2004), no. 1, pp. 153–160.
- J. Michael Steele, *Probability Theory and Combinatorial Optimization*, SIAM, Philadelphia, (1997).

A.M. Goyt (MSUM)

Marcus-Tardos

July 1, 2013 29 / 29