Pattern Avoidance in Ordered Set Partitions

Adam M. Goyt
MSU Moorhead
goytadam@mnstate.edu
Joint with Anant P. Godbole, Jennifer Herdan, and Lara K. Pudwell

June 29, 2012

Introduction

- Some Early Results
- Ordered Partitions and Words

Outline

- Introduction
- 2 Some Early Results
- 3 $\operatorname{op}_{n,[b_1,b_2,...,b_k]}(123) = \operatorname{op}_{n,[b_1,b_2,...,b_k]}(132)$
- Ordered Partitions and Words

Set Partitions

Definition

Let $[n] = \{1, 2, ..., n\}$ a partition, π , of [n], $\pi \vdash [n]$ is a family of sets $B_1, B_2, ..., B_k$, called blocks, such that $B_1 \uplus B_2 \uplus \cdots \uplus B_k = [n]$. We write

$$\pi = B_1/B_2/\ldots/B_k,$$

where min $B_1 < \min B_2 < \cdots < \min B_k$.

Set Partitions

Definition

Let $[n] = \{1, 2, ..., n\}$ a partition, π , of [n], $\pi \vdash [n]$ is a family of sets B_1, B_2, \ldots, B_k , called blocks, such that $B_1 \uplus B_2 \uplus \cdots \uplus B_k = [n]$. We write

$$\pi = B_1/B_2/\ldots/B_k,$$

where min $B_1 < \min B_2 < \cdots < \min B_k$.

Example

$$\pi = 13/247/56 \vdash [7].$$

Ordered Set Partitions

Definition

An ordered partition π of [n] is a partition of [n] where we specify an order for the blocks.

Ordered Set Partitions

Definition

An ordered partition π of [n] is a partition of [n] where we specify an order for the blocks.

Definition

Let $\mathcal{OP}_{n,k}$ be the set of ordered partitions of [n] with k blocks, and $\mathcal{OP}_{n,[b_1,b_2,...,b_k]}$ be the set of ordered partitions of [n] with k blocks and $|B_i| = b_i$.

Example of an Ordered Partition

Example

Consider the partition $\pi = 13/247/56 \vdash [7]$. There are 3! ordered partitions related to this partition by simply reordering the blocks.

Example of an Ordered Partition

Example

Consider the partition $\pi=13/247/56 \vdash [7]$. There are 3! ordered partitions related to this partition by simply reordering the blocks. They are 13/247/56, 13/56/247, 247/13/56, 247/56/13, 56/13/247, 56/247/13.

Example of an Ordered Partition

Example

Consider the partition $\pi=13/247/56 \vdash [7]$. There are 3! ordered partitions related to this partition by simply reordering the blocks. They are 13/247/56, 13/56/247, 247/13/56, 247/56/13, 56/13/247, 56/247/13.

Notice that the set of permutations of [n], S_n , is in bijection with $\mathcal{OP}_{n,n} = \mathcal{OP}_{n,[1,1,...,1]}$.

Definition

An ordered partition $\sigma = B_1/B_2/\dots/B_k \in \mathcal{OP}_{n,k}$ is said to contain a copy of a permutation $p = p_1p_2\cdots p_m$ if there is a sequence of elements $a_{i_1}a_{i_2}\cdots a_{i_m}$ with $a_{i_j}\in B_{i_j}$ for $1\leq j\leq m$ with $i_1< i_2<\dots< i_m$ such that $a_{i_1}a_{i_2}\dots a_{i_m}$ is order isomorphic to p.

Definition

An ordered partition $\sigma = B_1/B_2/\dots/B_k \in \mathcal{OP}_{n,k}$ is said to contain a copy of a permutation $p = p_1p_2\cdots p_m$ if there is a sequence of elements $a_{i_1}a_{i_2}\cdots a_{i_m}$ with $a_{i_j}\in B_{i_j}$ for $1\leq j\leq m$ with $i_1< i_2<\dots< i_m$ such that $a_{i_1}a_{i_2}\dots a_{i_m}$ is order isomorphic to p. Otherwise we say σ avoids p.

Definition

An ordered partition $\sigma = B_1/B_2/\dots/B_k \in \mathcal{OP}_{n,k}$ is said to contain a copy of a permutation $p = p_1p_2\cdots p_m$ if there is a sequence of elements $a_{i_1}a_{i_2}\cdots a_{i_m}$ with $a_{i_j}\in B_{i_j}$ for $1\leq j\leq m$ with $i_1< i_2<\cdots< i_m$ such that $a_{i_1}a_{i_2}\dots a_{i_m}$ is order isomorphic to p. Otherwise we say σ avoids p.

Example

For example let $\pi = 56/247/13$. 523 forms a copy of 312, and 573 forms a copy of 231.

Definition

An ordered partition $\sigma = B_1/B_2/\dots/B_k \in \mathcal{OP}_{n,k}$ is said to contain a copy of a permutation $p = p_1p_2\cdots p_m$ if there is a sequence of elements $a_{i_1}a_{i_2}\cdots a_{i_m}$ with $a_{i_j}\in B_{i_j}$ for $1\leq j\leq m$ with $i_1< i_2<\cdots< i_m$ such that $a_{i_1}a_{i_2}\dots a_{i_m}$ is order isomorphic to p. Otherwise we say σ avoids p.

Example

For example let $\pi=56/247/13$. 523 forms a copy of 312, and 573 forms a copy of 231. However, π avoids the permutations 123 and 132.

Outline

- Introduction
- Some Early Results
- 3 $\operatorname{op}_{n,[b_1,b_2,...,b_k]}(123) = \operatorname{op}_{n,[b_1,b_2,...,b_k]}(132)$
- Ordered Partitions and Words

$$\mathcal{OP}_{n,k}(p)$$

Definition

Let $\mathcal{OP}_{n,k}(p)$ be the set of partitions in $\mathcal{OP}_{n,k}$ avoiding the permutation p, and $op_{n,k}(p) = |\mathcal{OP}_{n,k}(p)|$.

$$\mathcal{OP}_{n,k}(p)$$

Definition

Let $\mathcal{OP}_{n,k}(p)$ be the set of partitions in $\mathcal{OP}_{n,k}$ avoiding the permutation p, and $op_{n,k}(p) = |\mathcal{OP}_{n,k}(p)|$.

Theorem

For $n \geq 1$,

$$op_{n,k}(12) = \binom{n-1}{k-1}.$$

Theorem

For $n \geq 1$ and $p \in \mathcal{S}_3$,

$$op_{n,3}(p) = \left(\frac{n^2}{8} + \frac{3n}{8} - 2\right)2^n + 3$$

Theorem

For $n \geq 1$ and $p \in S_3$,

$$op_{n,3}(p) = \left(\frac{n^2}{8} + \frac{3n}{8} - 2\right)2^n + 3$$

• Notice that $op_{n,3}(p) \sim 2^n$.

Theorem

For $n \geq 1$ and $p \in S_3$,

$$op_{n,3}(p) = \left(\frac{n^2}{8} + \frac{3n}{8} - 2\right)2^n + 3$$

- Notice that op_{n,3} $(p) \sim 2^n$.
- Classically op_{n,n} $(p) = |S_n(p)| \sim 4^n$

Theorem

For $n \geq 1$ and $p \in S_3$,

$$op_{n,3}(p) = \left(\frac{n^2}{8} + \frac{3n}{8} - 2\right)2^n + 3$$

- Notice that op_{n,3} $(p) \sim 2^n$.
- Classically op_{n,n} $(p) = |S_n(p)| \sim 4^n$
- Question: How many blocks are needed to achieve 3^n as an asymptotic? Maybe $\log(n)$?

Theorem

For n > 1 and $p \in S_3$.

$$op_{n,3}(p) = \left(\frac{n^2}{8} + \frac{3n}{8} - 2\right)2^n + 3$$

- Notice that op_{n,3} $(p) \sim 2^n$.
- Classically op_{n,n} $(p) = |S_n(p)| \sim 4^n$
- Question: How many blocks are needed to achieve 3ⁿ as an asymptotic? Maybe log(n)?

Conjecture

For n > 1, n even, and $p \in S_3$, we have that

$$op_{n,[2,2,...,2]} \sim \sqrt{12}^n$$
.

Partitions with n-1 blocks

Let
$$\widehat{\operatorname{op}}_{n,n-1} = \operatorname{op}_{n,n-1}(132)$$
, then

Partitions with n-1 blocks

Let
$$\widehat{\operatorname{op}}_{n,n-1} = \operatorname{op}_{n,n-1}(132)$$
, then

Theorem

$$\begin{split} \widehat{op}_{n,n-1} &= \sum_{k=0}^{n} C_k + \sum_{a=2}^{n-1} \sum_{k=0}^{n-a-2} C_k \sum_{i=1}^{a-1} r(a-1,i) \binom{i+n-k-a-1}{i} \\ &+ \sum_{a=2}^{n-1} C_{n-a-1} C_{a-1} + \sum_{a=2}^{n-1} \sum_{k=n-a}^{n-2} C_{n-a-1} C_{k-n+a+1} C_{n-k-2} \\ &+ 2 \sum_{j=1}^{n} C_{j-1} \widehat{op}_{n,n-j}. \end{split}$$

Outline

- Introduction
- 2 Some Early Results
- Ordered Partitions and Words

Graphs of Ordered Partitions

A graph of the partition 56/247/13.

The graph of an ordered partition is like that of a permutation, we simply allow more than one entry in each column.

Of course the reversal map is just a reflection over the vertical axis that divides the partition graph in half.

Of course the complement map is just a reflection over the horizontal axis that divides the partition graph in half.

Definition

Let $\pi \in \mathcal{OP}_{n,k}$, then we write π^r for the reversal of π and π^c for the complement of π .

Definition

Let $\pi \in \mathcal{OP}_{n,k}$, then we write π^r for the reversal of π and π^c for the complement of π .

Theorem

The ordered partition $\pi \in \mathcal{OP}_{n,k}$ avoids permutation $p \in \mathcal{S}_m$ iff π^r avoids p^r and π avoids p iff π^c avoids p^c . \square

Definition

Let $\pi \in \mathcal{OP}_{n,k}$, then we write π^r for the reversal of π and π^c for the complement of π .

Theorem

The ordered partition $\pi \in \mathcal{OP}_{n,k}$ avoids permutation $p \in \mathcal{S}_m$ iff π^r avoids p^r and π avoids p iff π^c avoids p^c . \square

This gives us that $op_{n,k}(123) = op_{n,k}(321)$ and $op_{n,k}(132) = op_{n,k}(231) = op_{n,k}(213) = op_{n,k}(312)$, as with permutations.

$$op_{n,[b_1,b_2,...,b_k]}(123) = op_{n,[b_1,b_2,...,b_k]}(132)$$

Theorem

For $n \ge 1$ and any b_1, b_2, \ldots, b_k with $\sum b_i = n$ we have,

$$op_{n,[b_1,b_2,...,b_k]}(123) = op_{n,[b_1,b_2,...,b_k]}(132).$$

$$op_{n,[b_1,b_2,...,b_k]}(123) = op_{n,[b_1,b_2,...,b_k]}(132)$$

Theorem

For $n \ge 1$ and any b_1, b_2, \ldots, b_k with $\sum b_i = n$ we have,

$$op_{n,[b_1,b_2,...,b_k]}(123) = op_{n,[b_1,b_2,...,b_k]}(132).$$

The proof is an adaptation of the bijective proof of this very same fact for permutations given by Simion and Schmidt. To do this we need to define what a left-to-right minimum is in an ordered partition.

Left-To-Right Minima

Definition

Let $\pi = B_1/B_2/.../B_k \in \mathcal{OP}_{n,k}$. The element $a \in B_i$ is a left-to-right minimum of π if $a \leq b$ for any $b \in B_i$ with j < i.

$$op_{n,[b_1,b_2,...,b_k]}(123) = op_{n,[b_1,b_2,...,b_k]}(132)$$

Consider the ordered partition 59/38/1267/4. The left-to-right minima are 1, 2, 3, 5, 9.

$$op_{n,[b_1,b_2,...,b_k]}(123) = op_{n,[b_1,b_2,...,b_k]}(132)$$

Consider the ordered partition 59/38/1267/4. The left-to-right minima are 1, 2, 3, 5, 9.

We observe that

- Every element in the first block is a left to right minimum.

$$op_{n,[b_1,b_2,...,b_k]}(123) = op_{n,[b_1,b_2,...,b_k]}(132)$$

Consider the ordered partition 59/38/1267/4. The left-to-right minima are 1, 2, 3, 5, 9.

We observe that

- Every element in the first block is a left to right minimum.
- The sequence of left to right minima is "decreasing".

$$op_{n,[b_1,b_2,...,b_k]}(123) = op_{n,[b_1,b_2,...,b_k]}(132)$$

Consider the ordered partition 59/38/1267/4. The left-to-right minima are 1, 2, 3, 5, 9.

We observe that

- Every element in the first block is a left to right minimum.
- The sequence of left to right minima is "decreasing".
- If $\pi \in \mathcal{OP}_{n,[b_1,b_2,...,b_k]}(123)$ then the remaining elements form a decreasing sequence.

Let
$$\phi: \mathcal{OP}_{n,[b_1,b_2,...,b_k]}(123) \to \mathcal{OP}_{n,[b_1,b_2,...,b_k]}(132)$$
 by

• Fix all left-to-right minima in their blocks, and remove the remaining entries from the partition.

Let
$$\phi: \mathcal{OP}_{n,[b_1,b_2,...,b_k]}(123) \to \mathcal{OP}_{n,[b_1,b_2,...,b_k]}(132)$$
 by

- Fix all left-to-right minima in their blocks, and remove the remaining entries from the partition.
- Replace the elements in the blocks from left to right by placing the smallest remaining element that is larger than the preceding left-to-right minimum.

Let
$$\phi: \mathcal{OP}_{n,[b_1,b_2,...,b_k]}(123) \to \mathcal{OP}_{n,[b_1,b_2,...,b_k]}(132)$$
 by

- Fix all left-to-right minima in their blocks, and remove the remaining entries from the partition.
- Replace the elements in the blocks from left to right by placing the smallest remaining element that is larger than the preceding left-to-right minimum.
- The new partition will be 132 avoiding.

59/38/1267/4

The inverse of this operation is to fix the left-to-right minima and replace the missing elements in decreasing order.

The inverse of this operation is to fix the left-to-right minima and replace the missing elements in decreasing order.

Theorem

$$\phi: \mathcal{OP}_{n,[b_1,b_2,...,b_k]}(123) \to \mathcal{OP}_{n,[b_1,b_2,...,b_k]}(132)$$
 is a bijection.

Outline

- Introduction
- Some Early Results
- 3 $\operatorname{op}_{n,[b_1,b_2,...,b_k]}(123) = \operatorname{op}_{n,[b_1,b_2,...,b_k]}(132)$
- Ordered Partitions and Words

Consider the Graph of the ordered partition 59/38/1267/4.

Consider the Graph of the ordered partition 59/38/1267/4.

Consider the Graph of the ordered partition 59/38/1267/4.

Not an Ordered Partition!

Consider the Graph of the ordered partition 59/38/1267/4.

Not an Ordered Partition! But it is a Word!

Definition

Let $[k]^n$ be the set of words of length n with letters from the alphabet [k].

Definition

Let $[k]^n$ be the set of words of length n with letters from the alphabet [k]. We say a word $w = w_1 w_2 \cdots w_n \in [k]^n$ contains a copy of the permutation $p = p_1 p_2 \cdots p_m \in S_m$ if there is a subword $w_{i_1} w_{i_2} \cdots w_{i_m}$ of w that is order isomorphic to p. Otherwise we say w avoids p.

Definition

Let $[k]^n$ be the set of words of length n with letters from the alphabet [k]. We say a word $w = w_1 w_2 \cdots w_n \in [k]^n$ contains a copy of the permutation $p = p_1 p_2 \cdots p_m \in S_m$ if there is a subword $w_{i_1} w_{i_2} \cdots w_{i_m}$ of w that is order isomorphic to p. Otherwise we say w avoids p.

Let p be a permutation and $[k]^n(p)$ be the set of words avoiding p.

Definition

Let $[k]^n$ be the set of words of length n with letters from the alphabet [k]. We say a word $w = w_1 w_2 \cdots w_n \in [k]^n$ contains a copy of the permutation $p = p_1 p_2 \cdots p_m \in S_m$ if there is a subword $w_{i_1} w_{i_2} \cdots w_{i_m}$ of w that is order isomorphic to p. Otherwise we say w avoids p.

Let p be a permutation and $[k]^n(p)$ be the set of words avoiding p.

Example

The word $443624432 \in [6]^9$ avoids 123.

Theorem (Burstein, Bränden-Mansour, Jelínek-Mansour)

$$|[k]^n(123)| = |[k]^n(132)|$$

Theorem (Burstein, Bränden-Mansour, Jelínek-Mansour)

$$|[k]^n(123)| = |[k]^n(132)|$$

Definition

For $\pi \in \mathcal{OP}_{n,k}$ ($w \in [k]^n$), let π^i (w^i) be the word ("ordered partition") obtained by applying the inverse symmetry.

Theorem (Burstein, Bränden-Mansour, Jelínek-Mansour)

$$|[k]^n(123)| = |[k]^n(132)|$$

Definition

For $\pi \in \mathcal{OP}_{n,k}$ ($w \in [k]^n$), let π^i (w^i) be the word ("ordered partition") obtained by applying the inverse symmetry.

Proof:

• Notice that $123^i = 123$ and $132^i = 132$, so if π avoids 123 then so does π^i .

Theorem (Burstein, Bränden-Mansour, Jelínek-Mansour)

$$|[k]^n(123)| = |[k]^n(132)|$$

Definition

For $\pi \in \mathcal{OP}_{n,k}$ ($w \in [k]^n$), let π^i (w^i) be the word ("ordered partition") obtained by applying the inverse symmetry.

Proof:

- Notice that $123^i = 123$ and $132^i = 132$, so if π avoids 123 then so does π^i .
- The map $i \circ \phi \circ i : [k]^n(123) \to [k]^n(132)$ is a bijection.

Consider the word 443624432, with graph

Consider the word 443624432, with graph

Consider the word 443624432, with graph

• Permutation patterns of length 3 done for certain block specifications.

- Permutation patterns of length 3 done for certain block specifications.
- All permutation patterns of length 4 open.

- Permutation patterns of length 3 done for certain block specifications.
- All permutation patterns of length 4 open.
- Avoiding other ordered partitions. (Working on this with a student.)

- Permutation patterns of length 3 done for certain block specifications.
- All permutation patterns of length 4 open.
- Avoiding other ordered partitions. (Working on this with a student.)
- Asymptotics?

- Permutation patterns of length 3 done for certain block specifications.
- All permutation patterns of length 4 open.
- Avoiding other ordered partitions. (Working on this with a student.)
- Asymptotics?
- Packing?

- Permutation patterns of length 3 done for certain block specifications.
- All permutation patterns of length 4 open.
- Avoiding other ordered partitions. (Working on this with a student.)
- Asymptotics?
- Packing?
- So many problems to solve, it's like Christmas!

Thank You

Thank You