Packing Set Partitions

Adam M. Goyt Minnesota State University Moorhead goytadam@mnstate.edu

October 2, 2009

Adam M. Goyt Minnesota State University Mo

Packing Set Partitions

October 2, 2009 1 / 22

Results for the Non-Restricted Definition

-

Outline

Results for the Restricted Definition

- 3 Results for the Non-Restricted Definition
- Open Problems

 Pattern avoidance is given its first systematic study by Simion and Schmidt.

- Pattern avoidance is given its first systematic study by Simion and Schmidt.
- Wilf suggests to consider packing instead of avoidance for permutations.

< ロ > < 同 > < 回 > < 回 >

- Pattern avoidance is given its first systematic study by Simion and Schmidt.
- Wilf suggests to consider packing instead of avoidance for permutations.
- Layered pattern density is determined for particular layered permutations. Work of Price [3] and Albert, Atkinson, Handley, Holton, and Stromquist [1].

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Pattern avoidance is given its first systematic study by Simion and Schmidt.
- Wilf suggests to consider packing instead of avoidance for permutations.
- Layered pattern density is determined for particular layered permutations. Work of Price [3] and Albert, Atkinson, Handley, Holton, and Stromquist [1].
- Burstein, Hästö, and Mansour [2] determine packing densities for words.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Pattern avoidance is given its first systematic study by Simion and Schmidt.
- Wilf suggests to consider packing instead of avoidance for permutations.
- Layered pattern density is determined for particular layered permutations. Work of Price [3] and Albert, Atkinson, Handley, Holton, and Stromquist [1].
- Burstein, Hästö, and Mansour [2] determine packing densities for words.
- Three years ago I am introduced to packing and am encouraged to consider packing for set partitions.

Definition

A partition π of a set S, written $\pi \vdash S$, is a family of disjoint nonempty subsets $B_i \subseteq S$, called blocks, such that $\uplus B_i = S$.

Definition

A partition π of a set S, written $\pi \vdash S$, is a family of disjoint nonempty subsets $B_i \subseteq S$, called blocks, such that $\uplus B_i = S$.

We write

$$\pi = B_1/B_2/\ldots/B_k,$$

where

$$\min B_1 < \min B_2 < \cdots < \min B_k,$$

Definition

A partition π of a set S, written $\pi \vdash S$, is a family of disjoint nonempty subsets $B_i \subseteq S$, called blocks, such that $\uplus B_i = S$.

We write

$$\pi = B_1/B_2/\ldots/B_k,$$

where

$$\min B_1 < \min B_2 < \cdots < \min B_k,$$

Let

$$\Pi_n = \{\pi : \pi \vdash [n] = \{1, 2, \dots, n\}\}, \text{ and } \Pi = \bigcup_n \Pi_n.$$

Adam M. Goyt Minnesota State University Mo

Definition

A partition π of a set S, written $\pi \vdash S$, is a family of disjoint nonempty subsets $B_i \subseteq S$, called blocks, such that $\uplus B_i = S$.

We write

$$\pi = B_1/B_2/\ldots/B_k,$$

where

$$\min B_1 < \min B_2 < \cdots < \min B_k,$$

Let

$$\Pi_n = \{\pi : \pi \vdash [n] = \{1, 2, \dots, n\}\}, \text{ and } \Pi = \bigcup_n \Pi_n.$$

Example

137/25/46 ⊢ [7]

Canonical Words

To each set partition is associated a canonical word $a_1 a_2 \dots a_n$ where $a_i = j$ if $i \in B_j$.

Canonical Words

To each set partition is associated a canonical word $a_1 a_2 \dots a_n$ where $a_i = j$ if $i \in B_j$.

Example 137/25/46 *corresponds to* 1213231.

3 > 4 3

Definition

Given any word $w \in [k]^n$ we may canonize w by replacing all occurrences of the first letter of w by 1, all occurrences of the next occurring letter by 2, etc.

글 🕨 🖌 글

Definition

Given any word $w \in [k]^n$ we may canonize w by replacing all occurrences of the first letter of w by 1, all occurrences of the next occurring letter by 2, etc.

Example

The canonized form of 47411477 is 12133122.

Definition

Given any word $w \in [k]^n$ we may canonize w by replacing all occurrences of the first letter of w by 1, all occurrences of the next occurring letter by 2, etc.

Example

The canonized form of 47411477 is 12133122.

There is a bijection between all canonized words of length n and partitions of [n].

Definition

Given any word $w \in [k]^n$ we may canonize w by replacing all occurrences of the first letter of w by 1, all occurrences of the next occurring letter by 2, etc.

Example

The canonized form of 47411477 is 12133122.

There is a bijection between all canonized words of length *n* and partitions of [*n*]. We will say that a partition, π is of length *n*, $\ell(\pi) = n$, if its associated canonical word has *n* letters.

B + 4 B +

Definition

Given any word $w \in [k]^n$ we may canonize w by replacing all occurrences of the first letter of w by 1, all occurrences of the next occurring letter by 2, etc.

Example

The canonized form of 47411477 is 12133122.

There is a bijection between all canonized words of length n and partitions of [n].

We will say that a partition, π is of length n, $\ell(\pi) = n$, if its associated canonical word has n letters.

From now on we will refer to these canonical words as partitions.

< ロ > < 同 > < 回 > < 回 >

Definition

We say that two words $\alpha = \alpha_1 \alpha_2 \dots \alpha_n$ and $\beta = \beta_1 \beta_2 \dots \beta_n$ are order isomorphic if for i < j

∃ ► < ∃ ►</p>

Definition

We say that two words $\alpha = \alpha_1 \alpha_2 \dots \alpha_n$ and $\beta = \beta_1 \beta_2 \dots \beta_n$ are order isomorphic if for i < j

•
$$\alpha_i = \alpha_j$$
 if and only if $\beta_i = \beta_j$ and

∃ ► < ∃ ►</p>

Definition

We say that two words $\alpha = \alpha_1 \alpha_2 \dots \alpha_n$ and $\beta = \beta_1 \beta_2 \dots \beta_n$ are order isomorphic if for i < j

•
$$\alpha_i = \alpha_j$$
 if and only if $\beta_i = \beta_j$ and

•
$$\alpha_i < \alpha_j$$
 if and only if $\beta_i < \beta_j$.

3 > 4 3

Definition

We say that two words $\alpha = \alpha_1 \alpha_2 \dots \alpha_n$ and $\beta = \beta_1 \beta_2 \dots \beta_n$ are order isomorphic if for i < j

•
$$\alpha_i = \alpha_j$$
 if and only if $\beta_i = \beta_j$ and

•
$$\alpha_i < \alpha_j$$
 if and only if $\beta_i < \beta_j$.

Example

The words 12332 and 34774 are order isomorphic.

글 🕨 🖌 글

Definition

We say that two words $\alpha = \alpha_1 \alpha_2 \dots \alpha_n$ and $\beta = \beta_1 \beta_2 \dots \beta_n$ are order isomorphic if for i < j

•
$$\alpha_i = \alpha_j$$
 if and only if $\beta_i = \beta_j$ and

•
$$\alpha_i < \alpha_j$$
 if and only if $\beta_i < \beta_j$.

Example

The words 12332 and 34774 are order isomorphic.

Example

The words 12332 and 51771 are not order isomorphic.

3 + 4 = +

Pattern Containment

Definition

Let σ be a partition with $\ell(\sigma) = n$ and π be a partition with $\ell(\pi) = k$. We say that σ contains π if

3 > 4 3

Pattern Containment

Definition

Let σ be a partition with $\ell(\sigma) = n$ and π be a partition with $\ell(\pi) = k$. We say that σ contains π if

• Non-Restricted:

there is a subsequence of σ of length k whose canonization is π .

Pattern Containment

Definition

Let σ be a partition with $\ell(\sigma) = n$ and π be a partition with $\ell(\pi) = k$. We say that σ contains π if

• Non-Restricted:

there is a subsequence of σ of length k whose canonization is π .

2 Restricted:

there is a subsequence of σ of length k that is order isomorphic to

 π .

Example

Let σ = 1213231 *and* π = 121.

Adam M. Goyt Minnesota State University Mo

Example

Let σ = 1213231 *and* π = 121.

Then 212, as in 1213231 is a copy of 121 in the non-restricted sense, but not in the restricted sense.

Example

Let σ = 1213231 *and* π = 121.

Then 212, as in 1213231 is a copy of 121 in the non-restricted sense, but not in the restricted sense.

And 131, as in 1213231, is a copy of 121 in both the restricted and non-restricted sense.

Adam M. Goyt Minnesota State University Mo

Example

Let $\sigma = 1213231$ and $\pi = 121$.

Then 212, as in 1213231 is a copy of 121 in the non-restricted sense, but not in the restricted sense.

And 131, as in 1213231, is a copy of 121 in both the restricted and non-restricted sense.

The non-restricted pattern containment definition allows for the blocks of the copy to be in a different order than the blocks in the pattern. The restricted definition does not.

Definition

Let $E \subseteq \prod_m$ and $\sigma \in \prod$ and $\nu(E, \sigma)$ be the number of copies of partitions from *E* in σ then define:

Adam M. Goyt Minnesota State University Mo

< ロ > < 同 > < 回 > < 回 >

Definition

Let $E \subseteq \prod_m$ and $\sigma \in \prod$ and $\nu(E, \sigma)$ be the number of copies of partitions from *E* in σ then define:

 $\mu(E, k, n) = \max\{\nu(E, \sigma) : \sigma \vdash [n] \text{ and } \sigma \text{ has at most } k \text{ blocks}\}$

Adam M. Goyt Minnesota State University Mo

3

A B > A B >

Image: Image:

Definition

Let $E \subseteq \prod_m$ and $\sigma \in \prod$ and $\nu(E, \sigma)$ be the number of copies of partitions from *E* in σ then define:

$$\mu(E, k, n) = \max\{\nu(E, \sigma) : \sigma \vdash [n] \text{ and } \sigma \text{ has at most } k \text{ blocks}\}$$
$$d(E, \sigma) = \frac{\nu(E, \sigma)}{\binom{n}{m}}$$

Adam M. Goyt Minnesota State University Mo

< ロ > < 同 > < 回 > < 回 >

Definition

Let $E \subseteq \prod_m$ and $\sigma \in \prod$ and $\nu(E, \sigma)$ be the number of copies of partitions from *E* in σ then define:

$$\mu(E, k, n) = \max\{\nu(E, \sigma) : \sigma \vdash [n] \text{ and } \sigma \text{ has at most } k \text{ blocks}\}$$

$$d(E, \sigma) = \frac{\nu(E, \sigma)}{\binom{n}{m}}$$

$$d(E, k, n) = \frac{\mu(E, k, n)}{\binom{n}{m}}$$

< ロ > < 同 > < 回 > < 回 >

Density

Theorem

For $n \ge m$ we have that $d(E, k, n-1) \ge d(E, k, n)$ and $d(E, k, n) \ge d(E, k-1, n)$. \Box

Adam M. Goyt Minnesota State University Mo

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Density

Theorem

For $n \ge m$ we have that $d(E, k, n-1) \ge d(E, k, n)$ and $d(E, k, n) \ge d(E, k-1, n)$. \Box

Definition

Let the packing density of the set $E \subseteq \Pi_m$ be

$$\delta(E) = \lim_{n \to \infty} d(E, n, n) = \lim_{n \to \infty} \lim_{k \to \infty} d(E, k, n).$$

Adam M. Goyt Minnesota State University Mo

Outline

2 Results for the Restricted Definition

3 Results for the Non-Restricted Definition

Open Problems

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

• The results in this section can be found in "Packing patterns into words" by Burstein, Hästö and Mansour [2].

4 3 > 4 3

- The results in this section can be found in "Packing patterns into words" by Burstein, Hästö and Mansour [2].
- The restricted definition for containment is the same as the definition for pattern containment in words.

- The results in this section can be found in "Packing patterns into words" by Burstein, Hästö and Mansour [2].
- The restricted definition for containment is the same as the definition for pattern containment in words.
- A layered partition is one of the form 11...122...233...3...kk...k. (Called nondecreasing words)

- The results in this section can be found in "Packing patterns into words" by Burstein, Hästö and Mansour [2].
- The restricted definition for containment is the same as the definition for pattern containment in words.
- A layered partition is one of the form 11...122...233...3...kk...k. (Called nondecreasing words)
- If *E* consists entirely of layered partitions then there exists a layered σ so that $\nu(E, \sigma) = \mu(E, n, n)$.

A B > A B >

- The results in this section can be found in "Packing patterns into words" by Burstein, Hästö and Mansour [2].
- The restricted definition for containment is the same as the definition for pattern containment in words.
- A layered partition is one of the form 11...122...233...3...kk...k. (Called nondecreasing words)
- If *E* consists entirely of layered partitions then there exists a layered σ so that $\nu(E, \sigma) = \mu(E, n, n)$.
- All of the results of Price [3] and Albert, Atkinson, Handley, Holton, and Stromquist [1] about layered permutations apply.

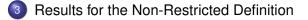
3

- The results in this section can be found in "Packing patterns into words" by Burstein, Hästö and Mansour [2].
- The restricted definition for containment is the same as the definition for pattern containment in words.
- A layered partition is one of the form 11...122...233...3...kk...k. (Called nondecreasing words)
- If *E* consists entirely of layered partitions then there exists a layered σ so that $\nu(E, \sigma) = \mu(E, n, n)$.
- All of the results of Price [3] and Albert, Atkinson, Handley, Holton, and Stromquist [1] about layered permutations apply.

•
$$\delta(121) = \frac{2\sqrt{3}-3}{2} \approx 0.2321$$

3

Outline



4 Open Problems

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Let σ be a partition, then the size of block *i* is the number of times *i* occurs in σ.

- Let σ be a partition, then the size of block *i* is the number of times *i* occurs in σ.
- A pattern π will be called monotone layered if its block sizes are weakly increasing or weakly decreasing.

4 3 5 4 3

- Let σ be a partition, then the size of block *i* is the number of times *i* occurs in σ.
- A pattern π will be called monotone layered if its block sizes are weakly increasing or weakly decreasing.
- For example $\pi = 11222333444444$ is monotone layered,

- Let σ be a partition, then the size of block *i* is the number of times *i* occurs in σ.
- A pattern π will be called monotone layered if its block sizes are weakly increasing or weakly decreasing.
- For example $\pi = 11222333444444$ is monotone layered, but $\pi = 112333$ is not monotone layered.

(B)

- Let σ be a partition, then the size of block *i* is the number of times *i* occurs in σ.
- A pattern π will be called monotone layered if its block sizes are weakly increasing or weakly decreasing.
- For example $\pi = 11222333444444$ is monotone layered, but $\pi = 112333$ is not monotone layered.
- If *E* consists entirely of monotone layered partitions then there exists some σ , which is also monotone layered, such that $\nu(E, \sigma) = \mu(E, n, n)$.

- Let σ be a partition, then the size of block *i* is the number of times *i* occurs in σ.
- A pattern π will be called monotone layered if its block sizes are weakly increasing or weakly decreasing.
- For example $\pi = 11222333444444$ is monotone layered, but $\pi = 112333$ is not monotone layered.
- If *E* consists entirely of monotone layered partitions then there exists some σ , which is also monotone layered, such that $\nu(E, \sigma) = \mu(E, n, n)$.
- Thus, all results for layered permutations that are monotone apply.

Monotone Layered Theorem

Definition

The block structure of a partition, π , is the multiset of block sizes of π .

Monotone Layered Theorem

Definition

The block structure of a partition, π , is the multiset of block sizes of π .

Theorem

Given a monotone increasing layered pattern $\pi = 1 \dots 12 \dots 2 \dots k \dots k$ then among all partitions with the same block structure as σ , the layered monotone increasing one is a maximizer.

Proof: Consider $\hat{\sigma}$, the monotone increasing layered partition with the same block structure as σ . We must show that $\nu(\pi, \sigma) \leq \nu(\pi, \hat{\sigma})$.

4 3 > 4 3

Proof: Consider $\hat{\sigma}$, the monotone increasing layered partition with the same block structure as σ . We must show that $\nu(\pi, \sigma) \leq \nu(\pi, \hat{\sigma})$. The last letter of σ was the last occurrence of some *j* in the partition. Let \hat{j} be the letter corresponding to *j* in $\hat{\sigma}$.

Proof: Consider $\hat{\sigma}$, the monotone increasing layered partition with the same block structure as σ . We must show that $\nu(\pi, \sigma) \leq \nu(\pi, \hat{\sigma})$. The last letter of σ was the last occurrence of some *j* in the partition. Let \hat{j} be the letter corresponding to *j* in $\hat{\sigma}$. By induction on the length of σ the number of copies of π in σ that do not involve this *j* is no more than the number of copies in $\hat{\sigma}$ that do not involve \hat{j} .

(B)

- **Proof:** Consider $\hat{\sigma}$, the monotone increasing layered partition with the same block structure as σ . We must show that $\nu(\pi, \sigma) \leq \nu(\pi, \hat{\sigma})$. The last letter of σ was the last occurrence of some *j* in the partition.
- Let \hat{j} be the letter corresponding to j in $\hat{\sigma}$.
- By induction on the length of σ the number of copies of π in σ that do not involve this *j* is no more than the number of copies in $\hat{\sigma}$ that do not involve \hat{j} .
- Now consider the number of copies of π in σ that did involve this *j*. In any such copy the *j*s must correspond to the *k*s of π . By inducting on *k* we can say that number of copies has not decreased in this case as well. \Box

Conjecture

The partition of [n] that maximizes the number of copies of 121 is $\underbrace{121212...}_{n}$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Conjecture

The partition of [n] that maximizes the number of copies of 121 is <u>121212...</u>

п

Example

$$\lim_{n\to\infty} d(121,\underbrace{121212...}_{n}) = \frac{1}{4}.$$

Adam M. Goyt Minnesota State University Mo

Image: A matrix and a matrix

Conjecture

The partition of [n] that maximizes the number of copies of 121 is 121212...

п

Example

$$\lim_{n\to\infty} d(121,\underbrace{121212...}_{n}) = \frac{1}{4}.$$

Theorem

$$\delta(121) \leq \frac{1}{2}$$
. \Box

Adam M. Goyt Minnesota State University Mo

4 3 > 4 3

Image: A matrix

Outline

Results for the Restricted Definition

• Can we solve the layered problem?

æ

- Can we solve the layered problem?
- Can it be shown that 12121... is the best possible for packing 121?

- Can we solve the layered problem?
- Can it be shown that 12121... is the best possible for packing 121?
- Can we at least get a better upper bound for 121?

- Can we solve the layered problem?
- Can it be shown that 12121... is the best possible for packing 121?
- Can we at least get a better upper bound for 121?
- Anything that might translate from the permutation case to the set partition case.

THANK YOU

2

- M. H. Albert, M. D. Atkinson, C. C. Handley, D. A. Holton,
 W. Stromquist, On packing densities of permutations, Electron. J.
 Combin. 9 (1) (2002) Research Paper 5, 20 pp. (electronic).
- A. Burstein, P. Hästö, T. Mansour, Packing patterns into words, Electron. J. Combin. 9 (2) (2002/03) Research paper 20, 13 pp. (electronic), permutation patterns (Otago, 2003).
- A. Price, Packing densities of layered patterns, Ph.D. thesis, University of Pennsylvania, Philadelphia, PA, 1997.