
Packing Set Partitions

Adam M. Goyt
Minnesota State University Moorhead

goytadam@mnstate.edu

October 2, 2009

Adam M. Goyt Minnesota State University Moorheadgoytadam@mnstate.edu ()Packing Set Partitions October 2, 2009 1 / 22



1 Introduction

2 Results for the Restricted Definition

3 Results for the Non-Restricted Definition

4 Open Problems

Adam M. Goyt Minnesota State University Moorheadgoytadam@mnstate.edu ()Packing Set Partitions October 2, 2009 2 / 22



Introduction

Outline

1 Introduction

2 Results for the Restricted Definition

3 Results for the Non-Restricted Definition

4 Open Problems

Adam M. Goyt Minnesota State University Moorheadgoytadam@mnstate.edu ()Packing Set Partitions October 2, 2009 3 / 22



Introduction

History

Pattern avoidance is given its first systematic study by Simion and
Schmidt.

Wilf suggests to consider packing instead of avoidance for
permutations.
Layered pattern density is determined for particular layered
permutations. Work of Price [3] and Albert, Atkinson, Handley,
Holton, and Stromquist [1].
Burstein, Hästö, and Mansour [2] determine packing densities for
words.
Three years ago I am introduced to packing and am encouraged
to consider packing for set partitions.
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Introduction

Set Partition Definition

Definition
A partition π of a set S, written π ` S, is a family of disjoint nonempty
subsets Bi ⊆ S, called blocks, such that ]Bi = S.

We write
π = B1/B2/ . . . /Bk ,

where
min B1 < min B2 < · · · < min Bk ,

Let
Πn = {π : π ` [n] = {1,2, . . . ,n}}, and Π =

⋃
n

Πn.

Example

137/25/46 ` [7]
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Introduction

Canonical Words

To each set partition is associated a canonical word a1a2 . . . an where
ai = j if i ∈ Bj .

Example

137/25/46 corresponds to 1213231.
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Introduction

Saintlyhood

Definition
Given any word w ∈ [k ]n we may canonize w by replacing all
occurrences of the first letter of w by 1, all occurrences of the next
occurring letter by 2, etc.

Example
The canonized form of 47411477 is 12133122.

There is a bijection between all canonized words of length n and
partitions of [n].
We will say that a partition, π is of length n, `(π) = n, if its associated
canonical word has n letters.
From now on we will refer to these canonical words as partitions.
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Introduction

Order Isomorphism

Definition
We say that two words α = α1α2 . . . αn and β = β1β2 . . . βn are order
isomorphic if for i < j

αi = αj if and only if βi = βj and
αi < αj if and only if βi < βj .

Example
The words 12332 and 34774 are order isomorphic.

Example
The words 12332 and 51771 are not order isomorphic.
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Introduction

Pattern Containment

Definition
Let σ be a partition with `(σ) = n and π be a partition with `(π) = k.
We say that σ contains π if

1 Non-Restricted:
there is a subsequence of σ of length k whose canonization is π.

2 Restricted:
there is a subsequence of σ of length k that is order isomorphic to
π.
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Introduction

Examples of Containment

Example
Let σ = 1213231 and π = 121.

Then 212, as in 1213231 is a copy of 121 in the non-restricted sense,
but not in the restricted sense.

And 131, as in 1213231, is a copy of 121 in both the restricted and
non-restricted sense.

The non-restricted pattern containment definition allows for the blocks
of the copy to be in a different order than the blocks in the pattern. The
restricted definition does not.

Adam M. Goyt Minnesota State University Moorheadgoytadam@mnstate.edu ()Packing Set Partitions October 2, 2009 10 / 22



Introduction

Examples of Containment

Example
Let σ = 1213231 and π = 121.

Then 212, as in 1213231 is a copy of 121 in the non-restricted sense,
but not in the restricted sense.

And 131, as in 1213231, is a copy of 121 in both the restricted and
non-restricted sense.

The non-restricted pattern containment definition allows for the blocks
of the copy to be in a different order than the blocks in the pattern. The
restricted definition does not.

Adam M. Goyt Minnesota State University Moorheadgoytadam@mnstate.edu ()Packing Set Partitions October 2, 2009 10 / 22



Introduction

Examples of Containment

Example
Let σ = 1213231 and π = 121.

Then 212, as in 1213231 is a copy of 121 in the non-restricted sense,
but not in the restricted sense.

And 131, as in 1213231, is a copy of 121 in both the restricted and
non-restricted sense.

The non-restricted pattern containment definition allows for the blocks
of the copy to be in a different order than the blocks in the pattern. The
restricted definition does not.

Adam M. Goyt Minnesota State University Moorheadgoytadam@mnstate.edu ()Packing Set Partitions October 2, 2009 10 / 22



Introduction

Examples of Containment

Example
Let σ = 1213231 and π = 121.

Then 212, as in 1213231 is a copy of 121 in the non-restricted sense,
but not in the restricted sense.

And 131, as in 1213231, is a copy of 121 in both the restricted and
non-restricted sense.

The non-restricted pattern containment definition allows for the blocks
of the copy to be in a different order than the blocks in the pattern. The
restricted definition does not.

Adam M. Goyt Minnesota State University Moorheadgoytadam@mnstate.edu ()Packing Set Partitions October 2, 2009 10 / 22



Introduction

Packing Definitions

Definition
Let E ⊆ Πm and σ ∈ Π and ν(E , σ) be the number of copies of
partitions from E in σ then define:

µ(E , k ,n) = max{ν(E , σ) : σ ` [n] and σ has at most k blocks}

d(E , σ) =
ν(E , σ)(n

m

)
d(E , k ,n) =

µ(E , k ,n)(n
m

)
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Introduction

Density

Theorem
For n ≥ m we have that d(E , k ,n − 1) ≥ d(E , k ,n) and
d(E , k ,n) ≥ d(E , k − 1,n). �

Definition
Let the packing density of the set E ⊆ Πm be

δ(E) = lim
n→∞

d(E ,n,n) = lim
n→∞

lim
k→∞

d(E , k ,n).
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Results for the Restricted Definition

Restricted Results

The results in this section can be found in ”Packing patterns into
words” by Burstein, Hästö and Mansour [2].

The restricted definition for containment is the same as the
definition for pattern containment in words.
A layered partition is one of the form
11 . . . 122 . . . 233 . . . 3 . . . kk . . . k . (Called nondecreasing words)
If E consists entirely of layered partitions then there exists a
layered σ so that ν(E , σ) = µ(E ,n,n).
All of the results of Price [3] and Albert, Atkinson, Handley, Holton,
and Stromquist [1] about layered permutations apply.

δ(121) = 2
√

3−3
2 ≈ 0.2321

Adam M. Goyt Minnesota State University Moorheadgoytadam@mnstate.edu ()Packing Set Partitions October 2, 2009 14 / 22



Results for the Restricted Definition

Restricted Results

The results in this section can be found in ”Packing patterns into
words” by Burstein, Hästö and Mansour [2].
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Results for the Non-Restricted Definition

The Layered Case

Let σ be a partition, then the size of block i is the number of times
i occurs in σ.

A pattern π will be called monotone layered if its block sizes are
weakly increasing or weakly decreasing.
For example π = 11222333444444 is monotone layered, but
π = 112333 is not monotone layered.
If E consists entirely of monotone layered partitions then there
exists some σ, which is also monotone layered, such that
ν(E , σ) = µ(E ,n,n).
Thus, all results for layered permutations that are monotone apply.
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π = 112333 is not monotone layered.
If E consists entirely of monotone layered partitions then there
exists some σ, which is also monotone layered, such that
ν(E , σ) = µ(E ,n,n).
Thus, all results for layered permutations that are monotone apply.
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Results for the Non-Restricted Definition

Monotone Layered Theorem

Definition
The block structure of a partition, π, is the multiset of block sizes of π.

Theorem
Given a monotone increasing layered pattern
π = 1 . . . 12 . . . 2 . . . k . . . k then among all partitions with the same
block structure as σ, the layered monotone increasing one is a
maximizer.
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Results for the Non-Restricted Definition

Proof

Proof: Consider σ̂, the monotone increasing layered partition with the
same block structure as σ. We must show that ν(π, σ) ≤ ν(π, σ̂).

The last letter of σ was the last occurrence of some j in the partition.
Let ĵ be the letter corresponding to j in σ̂.
By induction on the length of σ the number of copies of π in σ that do
not involve this j is no more than the number of copies in σ̂ that do not
involve ĵ .
Now consider the number of copies of π in σ that did involve this j . In
any such copy the js must correspond to the ks of π. By inducting on k
we can say that number of copies has not decreased in this case as
well. �
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Results for the Non-Restricted Definition

121

Conjecture

The partition of [n] that maximizes the number of copies of 121 is
121212 . . .︸ ︷︷ ︸

n

Example

lim
n→∞

d(121,121212 . . .︸ ︷︷ ︸
n

) =
1
4

.

Theorem

δ(121) ≤ 1
2 . �
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Open Problems

Outline

1 Introduction

2 Results for the Restricted Definition

3 Results for the Non-Restricted Definition

4 Open Problems
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Open Problems

Open Problems

Can we solve the layered problem?

Can it be shown that 12121 . . . is the best possible for packing
121?
Can we at least get a better upper bound for 121?
Anything that might translate from the permutation case to the set
partition case.
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Open Problems

THANK YOU
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Open Problems
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