Packing Set Partitions: A New Hope

Adam M. Goyt (Joint with Lara K. Pudwell).

Minnesota State University Moorhead
goytadam@mnstate.edu

July 11, 2014
Introduction

Previous Results

Death Star ($\delta(121) = \frac{1}{4}$) Destruction
Outline

1. Introduction
2. Previous Results
3. Death Star \((\delta(121) = \frac{1}{4})\) Destruction
History

- Wilf suggests people consider packing instead of avoidance for permutations.
Wilf suggests people consider packing instead of avoidance for permutations.

Wilf suggests people consider packing instead of avoidance for permutations.

Wilf suggests people consider packing instead of avoidance for permutations.

Eight years ago in Iceland I am encouraged to consider packing for set partitions by Walter Stromquist.
Adam Before Electrolysis
Set Partition Definition

Definition

A partition \(\pi \) of a set \(S \), written \(\pi \vdash S \), is a family of disjoint nonempty subsets \(B_i \subset S \), called blocks, such that \(\biguplus B_i = S \).
Set Partition Definition

Definition

A partition π of a set S, written $\pi \vdash S$, is a family of disjoint nonempty subsets $B_i \subseteq S$, called blocks, such that $\bigcup B_i = S$.

We write

$$\pi = B_1 / B_2 / \ldots / B_k,$$

where

$$\min B_1 < \min B_2 < \cdots < \min B_k,$$
Set Partition Definition

Definition

A partition π of a set S, written $\pi \vdash S$, is a family of disjoint nonempty subsets $B_i \subseteq S$, called blocks, such that $\biguplus B_i = S$.

We write

$$\pi = B_1 / B_2 / \ldots / B_k,$$

where

$$\min B_1 < \min B_2 < \cdots < \min B_k,$$

Example

$137/25/46 \vdash [7]$
Set Partition Definition

Definition

A partition \(\pi \) of a set \(S \), written \(\pi \vdash S \), is a family of disjoint nonempty subsets \(B_i \subseteq S \), called blocks, such that \(\biguplus B_i = S \).

We write

\[
\pi = B_1 / B_2 / \ldots / B_k,
\]

where

\[
\min B_1 < \min B_2 < \cdots < \min B_k.
\]

Example

137/25/46 \(\vdash [7] \)

Let

\[
\Pi_n = \{ \pi : \pi \vdash [n] = \{1, 2, \ldots, n\}\}, \text{ and } \Pi_{n,k} = \{ \pi \in \Pi_n : \pi \text{ has } k \text{ blocks}\}.
\]
To each set partition is associated a canonical word $a_1 a_2 \ldots a_n$ where $a_i = j$ if $i \in B_j$.
To each set partition is associated a canonical word $a_1 a_2 \ldots a_n$ where $a_i = j$ if $i \in B_j$.

Example

137/25/46 corresponds to 1213231.
Canonizing Words

Definition

Given any word \(w \in [k]^n \) we may canonize \(w \) by replacing all occurrences of the first letter of \(w \) by 1, all occurrences of the next occurring letter by 2, etc.
Canonizing Words

Definition

Given any word $w \in [k]^n$ we may canonize w by replacing all occurrences of the first letter of w by 1, all occurrences of the next occurring letter by 2, etc.

Example

The canonized form of 47411477 is 12133122.
Canonizing Words

Definition

Given any word \(w \in [k]^n \) *we may canonize* \(w \) *by replacing all occurrences of the first letter of* \(w \) *by 1, all occurrences of the next occurring letter by 2, etc.*

Example

The canonized form of 47411477 *is* 12133122.

There is a bijection between all canonized words of length *n* and partitions of \([n]\).
Canonizing Words

Definition

Given any word $w \in [k]^n$ *we may canonize* w *by replacing all occurrences of the first letter of* w *by 1, all occurrences of the next occurring letter by 2, etc.*

Example

The canonized form of 47411477 *is* 12133122.

There is a bijection between all canonized words of length n and partitions of $[n]$.

We will say that a partition, π is of length n, $\ell(\pi) = n$, if its associated canonical word has n letters.
Canonizing Words

Definition

Given any word $w \in [k]^n$ we may canonize w by replacing all occurrences of the first letter of w by 1, all occurrences of the next occurring letter by 2, etc.

Example

The canonized form of 47411477 is 12133122.

There is a bijection between all canonized words of length n and partitions of $[n]$.

We will say that a partition, π is of length n, $\ell(\pi) = n$, if its associated canonical word has n letters.

From now on we will refer to these canonical words as partitions.
Order Isomorphism

Definition

We say that two words $\alpha = \alpha_1 \alpha_2 \ldots \alpha_n$ and $\beta = \beta_1 \beta_2 \ldots \beta_n$ are order isomorphic if for $i < j$

- $\alpha_i < \alpha_j$ if and only if $\beta_i < \beta_j$, and
- $\alpha_i = \alpha_j$ if and only if $\beta_i = \beta_j$.

Example

The words 12332 and 34774 are order isomorphic.

Example

The words 12332 and 51771 are not order isomorphic.
Order Isomorphism

Definition

We say that two words $\alpha = \alpha_1 \alpha_2 \ldots \alpha_n$ and $\beta = \beta_1 \beta_2 \ldots \beta_n$ are order isomorphic if for $i < j$

- $\alpha_i < \alpha_j$ if and only if $\beta_i < \beta_j$, and
- $\alpha_i = \alpha_j$ if and only if $\beta_i = \beta_j$.

Example

The words 12332 and 34774 are order isomorphic.
Definition

We say that two words $\alpha = \alpha_1 \alpha_2 \ldots \alpha_n$ and $\beta = \beta_1 \beta_2 \ldots \beta_n$ are order isomorphic if for $i < j$

- $\alpha_i < \alpha_j$ if and only if $\beta_i < \beta_j$, and
- $\alpha_i = \alpha_j$ if and only if $\beta_i = \beta_j$.

Example

The words 12332 and 34774 are order isomorphic.

Example

The words 12332 and 51771 are not order isomorphic.
Pattern Containment

Definition

Let σ be a partition with $\ell(\sigma) = n$ and π be a partition with $\ell(\pi) = k$. We say that σ contains π if
Definition

Let σ be a partition with $\ell(\sigma) = n$ and π be a partition with $\ell(\pi) = k$. We say that σ contains π if

1. **Non-Restricted:**
 there is a subsequence of σ of length k whose canonization is π.

Adam M. Goyt (Joint with Lara K. Pudwell). (MSUM)
Packing Set Partitions: A New Hope
July 11, 2014 11 / 28
Definition

Let σ be a partition with $\ell(\sigma) = n$ and π be a partition with $\ell(\pi) = k$. We say that σ contains π if

1. **Non-Restricted:**

 there is a subsequence of σ of length k whose canonization is π.

2. **Restricted:**

 there is a subsequence of σ of length k that is order isomorphic to π.

Examples of Containment

Example

Let $\sigma = 1213231$ and $\pi = 121$.
Examples of Containment

Example

Let $\sigma = 1213231$ and $\pi = 121$.

Then 212, as in 1213231 is a copy of 121 in the non-restricted sense, but not in the restricted sense.
Examples of Containment

Example

Let $\sigma = 1213231$ and $\pi = 121$.

Then 212, as in 1213231 is a copy of 121 in the non-restricted sense, but not in the restricted sense.

And 131, as in 1213231, is a copy of 121 in both the restricted and non-restricted sense.
Examples of Containment

Example

Let $\sigma = 1213231$ and $\pi = 121$.

Then 212, as in 1213231 is a copy of 121 in the non-restricted sense, but not in the restricted sense.

And 131, as in 1213231, is a copy of 121 in both the restricted and non-restricted sense.

The non-restricted pattern containment definition allows for the blocks of the copy to be in a different order than the blocks in the pattern. The restricted definition does not.
Definition

Let $E \subseteq \Pi_m$ and $\sigma \in \Pi$ and $\nu(E, \sigma)$ be the number of copies of partitions from E in σ then define:

$$\mu(E, k, n) = \max \{ \nu(E, \sigma) : \sigma \trianglerighteq [n] \text{ and } \sigma \text{ has at most } k \text{ blocks} \}$$

$$d(E, \sigma) = \nu(E, \sigma)$$

$$d(E, k, n) = \mu(E, k, n)$$
Packing Definitions

Definition

Let $E \subseteq \Pi_m$ and $\sigma \in \Pi$ and $\nu(E, \sigma)$ be the number of copies of partitions from E in σ then define:

$$\mu(E, k, n) = \max\{ \nu(E, \sigma) : \sigma \vdash [n] \text{ and } \sigma \text{ has at most } k \text{ blocks} \}$$
Definition

Let $E \subseteq \Pi_m$ and $\sigma \in \Pi$ and $\nu(E, \sigma)$ be the number of copies of partitions from E in σ then define:

$$\mu(E, k, n) = \max\{\nu(E, \sigma) : \sigma \vdash [n] \text{ and } \sigma \text{ has at most } k \text{ blocks}\}$$

$$d(E, \sigma) = \frac{\nu(E, \sigma)}{\binom{n}{m}}$$
Definition

Let \(E \subseteq \Pi_m \) and \(\sigma \in \Pi \) and \(\nu(E, \sigma) \) be the number of copies of partitions from \(E \) in \(\sigma \) then define:

\[
\mu(E, k, n) = \max\{\nu(E, \sigma) : \sigma \vdash [n] \text{ and } \sigma \text{ has at most } k \text{ blocks}\}
\]

\[
d(E, \sigma) = \frac{\nu(E, \sigma)}{\binom{n}{m}}
\]

\[
d(E, k, n) = \frac{\mu(E, k, n)}{\binom{n}{m}}
\]
Density

Theorem

For $n \geq m$ we have that $d(E, k, n - 1) \geq d(E, k, n)$ and $d(E, k, n) \geq d(E, k - 1, n)$. □
Density

Theorem

For $n \geq m$ we have that $d(E, k, n - 1) \geq d(E, k, n)$ and $d(E, k, n) \geq d(E, k - 1, n)$. □

Definition

Let the packing density of the set $E \subseteq \Pi_m$ be

$$
\delta(E) = \lim_{n \to \infty} d(E, n, n) = \lim_{n \to \infty} \lim_{k \to \infty} d(E, k, n).
$$
1. Introduction

2. Previous Results

3. Death Star ($\delta(121) = \frac{1}{4}$) Destruction
These are the results that I presented in Florence 2009.

<table>
<thead>
<tr>
<th>Partition π</th>
<th>111</th>
<th>112</th>
<th>123</th>
<th>121</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restricted Packing</td>
<td>1</td>
<td>$2\sqrt{3} - 3$</td>
<td>1</td>
<td>$\frac{2\sqrt{3} - 3}{2}$</td>
</tr>
<tr>
<td>Density $\delta_r(\pi)$</td>
<td>1</td>
<td>$2\sqrt{3} - 3$</td>
<td>1</td>
<td>$\frac{1}{4}$</td>
</tr>
<tr>
<td>Unrestricted Packing</td>
<td>1</td>
<td>$2\sqrt{3} - 3$</td>
<td>1</td>
<td>$\frac{1}{4}$</td>
</tr>
</tbody>
</table>
Outline

1. Introduction
2. Previous Results
3. Death Star ($\delta(121) = \frac{1}{4}$) Destruction
Goal: Show that $121212 \cdots 12$ is a maximizer for 121.

1212 \cdots 12$ is a maximizer
Packing 121 into 2 block Partitions

Theorem

The number of copies of 121 in a partition among those with two blocks is maximized by the partition $R2D2 \cdots R2D2$
Packing 121 into 2 block Partitions

Theorem

The number of copies of 121 in a partition among those with two blocks is maximized by the partition $\underbrace{121\cdots121}_n$
Packing 121 into 2 block Partitions

Theorem

The number of copies of 121 in a partition among those with two blocks is maximized by the partition $\underbrace{121}_n \cdots \underbrace{121}_n$

We prove this by proving a series of Lemmas.

Lemma

Let $\pi \in \Pi_{n,2}$ have exactly two blocks. Assume that π consists of i 1's and j 2's with $i \geq j$. Then the partition

$$\hat{\pi} = \underbrace{11 \cdots 1}_{\lceil (i-j-1)/2 \rceil} \underbrace{1212 \cdots 121}_{2j+1} \underbrace{11 \cdots 1}_{\lceil (i-j-1)/2 \rceil}$$

satisfies $\nu(121, \hat{\pi}) \geq \nu(121, \pi)$.
Idea of the Proof

- Suppose that inside of the partition we have a string of length $\ell + 2$ of the form

$$2 1 1 \cdots 1 2$$

Suppose that inside of the partition we have a string of length $\ell + 2$ of the form $2 1 1 \cdots 1 2$.

Adam M. Goyt (Joint with Lara K. Pudwell). (MSUM)
Idea of the Proof

- Suppose that inside of the partition we have a string of length $\ell + 2$ of the form

$$(a \text{ 1's and } b \text{ 2's}) \underbrace{2 \cdots 2}_{\ell} (c \text{ 1's and } d \text{ 2's}).$$

- Suppose that there are a 1’s and b 2’s preceding the initial 2 and c 1’s and d 2’s succeeding the final 2.
Idea of the Proof

- Suppose that inside of the partition we have a string of length $\ell + 2$ of the form
 \[\underbrace{a \ 1's \ and \ b \ 2's} \ 2 \ 1 \ 1 \ \cdots \ 1 \ 2 \ \underbrace{c \ 1's \ and \ d \ 2's}. \]

- Suppose that there are a 1's and b 2's preceding the initial 2 and c 1's and d 2's succeeding the final 2.

- Swapping the initial 2 with the first 1 in the run gives us a change of
 \[(b + c + \ell - 1) - (a + d + 1) \] copies.
Idea of the Proof

- Suppose that inside of the partition we have a string of length $\ell + 2$ of the form

\[(a \, 1's \text{ and } b \, 2's) \underbrace{2 \, 1 \, 1 \cdots 1 \, 2}_{\ell} \, (c \, 1's \text{ and } d \, 2's).\]

- Suppose that there are a 1's and b 2's preceding the initial 2 and c 1's and d 2's succeeding the final 2.

- Swapping the initial 2 with the first 1 in the run gives us a change of $(b + c + \ell - 1) - (a + d + 1)$ copies.

- Swapping the final 2 with the final 1 in the run gives a change of $(a + d + \ell - 1) - (b + c + 1)$ copies.
Idea of the Proof

- Suppose that inside of the partition we have a string of length $\ell + 2$ of the form
 \[(a\ 1's\ and\ b\ 2's)\ 2\underbrace{11\cdots12}_{\ell} (c\ 1's\ and\ d\ 2's).\]
- Suppose that there are a 1’s and b 2’s preceding the initial 2 and c 1’s and d 2’s succeeding the final 2.
- Swapping the initial 2 with the first 1 in the run gives us a change of $(b + c + \ell - 1) - (a + d + 1)$ copies.
- Swapping the final 2 with the final 1 in the run gives a change of $(a + d + \ell - 1) - (b + c + 1)$ copies.
- So we can perform at least one of these without losing copies of 121.
Idea of the Proof

- Suppose that inside of the partition we have a string of length $\ell + 2$ of the form

 $$(a \ 1's \ and \ b \ 2's) \ \underbrace{2 \ 1 \ 1 \ \cdots \ 1 \ 2} \ (c \ 1's \ and \ d \ 2's).$$

- Suppose that there are a 1's and b 2's preceding the initial 2 and c 1's and d 2's succeeding the final 2.

- Swapping the initial 2 with the first 1 in the run gives us a change of $(b + c + \ell - 1) - (a + d + 1)$ copies.

- Swapping the final 2 with the final 1 in the run gives a change of $(a + d + \ell - 1) - (b + c + 1)$ copies.

- So we can perform at least one of these without losing copies of 121.

- Repeating this process eventually gives us a middle section of alternating 1's and 2's.
Proof that $12121 \cdots 12$ is maximal in $\Pi_{n,2}$

- Start with a partition $\pi \in \Pi_{n,2}$.

Adam M. Goyt (Joint with Lara K. Pudwell). (MSUM)
Packing Set Partitions: A New Hope
July 11, 2014 24 / 28
Proof that $12121 \cdots 12$ is maximal in $\Pi_{n,2}$

- Start with a partition $\pi \in \Pi_{n,2}$.
- We can rearrange it so that it has the structure described in the Lemma. $11 \cdots 1 \underbrace{1212 \cdots 121}_{a} \underbrace{11 \cdots 1}_{2j+1} \underbrace{a \text{ or } a-1}$
Proof that $12121 \cdots 12$ is maximal in $\Pi_{n,2}$

- Start with a partition $\pi \in \Pi_{n,2}$.
- We can rearrange it so that it has the structure described in the Lemma.

\[
\begin{align*}
&\underbrace{11 \cdots 1}_{a} \underbrace{1212 \cdots 121}_{2j+1} \underbrace{11 \cdots 1}_{a \text{ or } a-1}
\end{align*}
\]

- Changing the last 1 in the run of a 1’s at the beginning and the first 1 in the run of a 1’s at the end, we lose $2ja - j + 2\binom{j+1}{2}$ copies of 121 and gain $2(a - 1)(j + a) + \binom{j+1}{2} + \binom{j+2}{2}$ copies of 121.
Proof that $12121 \cdots 12$ is maximal in $\Pi_{n,2}$

- Start with a partition $\pi \in \Pi_{n,2}$.
- We can rearrange it so that it has the structure described in the Lemma.

$$\underbrace{11 \cdots 1}_{a} \underbrace{212 \cdots 121}_{2j+1} \underbrace{11 \cdots 1}_{a \text{ or } a-1}$$

- Changing the last 1 in the run of a 1’s at the beginning and the first 1 in the run of a 1’s at the end, we lose $2ja - j + 2 \binom{j+1}{2}$ copies of 121 and gain $2(a - 1)(j + a) + \binom{j+1}{2} + \binom{j+2}{2}$ copies of 121.
- This is a net gain of $a^2 + (a - 1)^2$ copies of 121.
Proof that $12121 \cdots 12$ is maximal in $\Pi_{n,2}$

- Start with a partition $\pi \in \Pi_{n,2}$.
- We can rearrange it so that it has the structure described in the Lemma. $11 \cdots 1 1212 \cdots 121 11 \cdots 1$

 \[\begin{array}{ccc}
 a & 2j+1 & a \text{ or } a-1
 \end{array} \]

- Changing the last 1 in the run of a 1’s at the beginning and the first 1 in the run of a 1’s at the end, we lose $2ja - j + 2 \binom{j+1}{2}$ copies of 121 and gain $2(a-1)(j+a) + \binom{j+1}{2} + \binom{j+2}{2}$ copies of 121.

- This is a net gain of $a^2 + (a - 1)^2$ copies of 121.

- The case where there are $a - 1$ 1’s at the end gives a net gain of $2(a - 1)^2$ copies of 121.
Proof that $12121 \cdots 12$ is maximal in $\Pi_{n,2}$

- Start with a partition $\pi \in \Pi_{n,2}$.
- We can rearrange it so that it has the structure described in the Lemma. $11 \cdots 1212 \cdots 121 \cdot \cdot \cdot 1$
 \[a \quad 2j+1 \quad a \text{ or } a-1 \]
- Changing the last 1 in the run of a 1’s at the beginning and the first 1 in the run of a 1’s at the end, we lose $2ja - j + 2\binom{j+1}{2}$ copies of 121 and gain $2(a-1)(j+a) + \binom{j+1}{2} + \binom{j+2}{2}$ copies of 121.
- This is a net gain of $a^2 + (a-1)^2$ copies of 121.
- The case where there are $a-1$ 1’s at the end gives a net gain of $2(a-1)^2$ copies of 121.
- Thus the partition $\underbrace{1212 \cdots 121}_{n}$ is a maximizer in $\Pi_{n,2}$
Proof of the case for more than two blocks

Let $\alpha_n = \underbrace{1212 \cdots 12}_n$.
Proof of the case for more that two blocks

- Let $\alpha_n = \overbrace{1212 \cdots 12}^n$.

- We observe that $\nu(121, \alpha_n) = \frac{1}{24} (n^3 - n)$, and let $g(n) = \frac{1}{24} (n^3 - n)$.
Proof of the case for more that two blocks

- Let $\alpha_n = \underbrace{1212 \cdots 12}_n$.
- We observe that $\nu(121, \alpha_n) = \frac{1}{24} (n^3 - n)$, and let $g(n) = \frac{1}{24}(n^3 - n)$.
- Given any partition $\pi \in \Pi_n$ a copy of 121 in π can only use two blocks at a time.
Proof of the case for more than two blocks

- Let $\alpha_n = \underbrace{1212 \cdots 12}_n$.

- We observe that $\nu(121, \alpha_n) = \frac{1}{24} (n^3 - n)$, and let $g(n) = \frac{1}{24} (n^3 - n)$.

- Given any partition $\pi \in \Pi_n$ a copy of 121 in π can only use two blocks at a time.

- Assume that $\pi \in \Pi_n$ has 3 blocks. The first has a elements the second b elements and the third $n - a - b$ elements. Then the maximal number of copies in π is $g(a + b) + g(n - a) + g(n - b)$. This expression is maximized when $a = b = n/3$. So the number of copies of 121 in π is bounded by $3g(2n/3) = \frac{n^3}{27} - \frac{n}{12}$.
Proof of the case for more that two blocks

- Let $\alpha_n = \underbrace{1212 \cdots 12}_n$.

- We observe that $\nu(121, \alpha_n) = \frac{1}{24} (n^3 - n)$, and let $g(n) = \frac{1}{24} (n^3 - n)$.

- Given any partition $\pi \in \Pi_n$ a copy of 121 in π can only use two blocks at a time.

- Assume that $\pi \in \Pi_n$ has 3 blocks. The first has a elements the second b elements and the third $n - a - b$ elements. Then the maximal number of copies in π is $g(a + b) + g(n - a) + g(n - b)$. This expression is maximized when $a = b = n/3$. So the number of copies of 121 in π is bounded by $3g(2n/3) = \frac{n^3}{27} - \frac{n}{12}$.

- A similar argument shows that the maximal number of copies in a partition with k blocks is also less that $g(n)$.
Proof of the case for more than two blocks

Let \(\alpha_n = \underbrace{1212 \cdots 12}_n \).

We observe that \(\nu(121, \alpha_n) = \frac{1}{24} (n^3 - n) \), and let \(g(n) = \frac{1}{24} (n^3 - n) \).

Given any partition \(\pi \in \Pi_n \) a copy of 121 in \(\pi \) can only use two blocks at a time.

Assume that \(\pi \in \Pi_n \) has 3 blocks. The first has \(a \) elements the second \(b \) elements and the third \(n - a - b \) elements. Then the maximal number of copies in \(\pi \) is \(g(a + b) + g(n - a) + g(n - b) \). This expression is maximized when \(a = b = n/3 \). So the number of copies of 121 in \(\pi \) is bounded by \(3g(2n/3) = \frac{n^3}{27} - \frac{n}{12} \).

A similar argument shows that the maximal number of copies in a partition with \(k \) blocks is also less than \(g(n) \).

Finally, \(\delta(121) = \lim_{n \to \infty} \frac{g(n)}{\binom{n}{3}} = \frac{1}{4} \).
Death Star Explosion

The End of the Death Star
Ur Oh!
Ur Oh!

Thank you in Wookiee.
A special thanks to

- Christopher Lippay
- Julie Lippay, and
- Trina Spaeth
URL http://www.combinatorics.org/Volume_9/Abstracts/v9i1r5.html

URL http://www.combinatorics.org/Volume_9/Abstracts/v9i2r20.html