Packing Set Partitions: A New Hope

Adam M. Goyt (Joint with Lara K. Pudwell).

Minnesota State University Moorhead goytadam@mnstate.edu

July 11, 2014

Adam M. Goyt (Joint with Lara K. Pudwell). (N

Packing Set Partitions: A New Hope

July 11, 2014 1 / 28

• • • • • • • • • • • •

Adam M. Goyt (Joint with Lara K. Pudwell). (N

Packing Set Partitions: A New Hope

July 11, 2014 2 / 28

Outline

2 Previous Results

Death Star ($\delta(121) = \frac{1}{4}$) Destruction

Adam M. Goyt (Joint with Lara K. Pudwell). (N

Packing Set Partitions: A New Hope

July 11, 2014 3 / 28

э

イロト イヨト イヨト イヨト

 Wilf suggests people consider packing instead of avoidance for permutations.

ъ

• • • • • • • • • • • •

- Wilf suggests people consider packing instead of avoidance for permutations.
- Layered pattern density is determined for particular layered permutations. Work of Price [3] and Albert, Atkinson, Handley, Holton, and Stromquist [1].

- Wilf suggests people consider packing instead of avoidance for permutations.
- Layered pattern density is determined for particular layered permutations. Work of Price [3] and Albert, Atkinson, Handley, Holton, and Stromquist [1].
- Burstein, Hästö, and Mansour [2] determine packing densities for words.

< ロ > < 同 > < 回 > < 回 >

- Wilf suggests people consider packing instead of avoidance for permutations.
- Layered pattern density is determined for particular layered permutations. Work of Price [3] and Albert, Atkinson, Handley, Holton, and Stromquist [1].
- Burstein, Hästö, and Mansour [2] determine packing densities for words.
- Eight years ago in Iceland I am encouraged to consider packing for set partitions by Walter Stromquist.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Walt Stromquist

Adam M. Goyt (Joint with Lara K. Pudwell). (N

Packing Set Partitions: A New Hope

July 11, 2014 5 / 28

・ロト ・ 日 ト ・ ヨ ト ・

Adam Before Electrolysis

Adam M. Goyt (Joint with Lara K. Pudwell). (N

Packing Set Partitions: A New Hope

Definition

A partition π of a set S, written $\pi \vdash S$, is a family of disjoint nonempty subsets $B_i \subseteq S$, called blocks, such that $\uplus B_i = S$.

Adam M. Goyt (Joint with Lara K. Pudwell). (N

Packing Set Partitions: A New Hope

July 11, 2014 7 / 28

4 A N

Definition

A partition π of a set S, written $\pi \vdash S$, is a family of disjoint nonempty subsets $B_i \subseteq S$, called blocks, such that $\uplus B_i = S$.

We write

$$\pi = B_1/B_2/\ldots/B_k,$$

where

$$\min B_1 < \min B_2 < \cdots < \min B_k,$$

4 A N

3 1 4

Definition

A partition π of a set S, written $\pi \vdash S$, is a family of disjoint nonempty subsets $B_i \subseteq S$, called blocks, such that $\uplus B_i = S$.

We write

$$\pi = B_1/B_2/\ldots/B_k,$$

where

$$\min B_1 < \min B_2 < \cdots < \min B_k,$$

Example 137/25/46 ⊢ [7]

Adam M. Goyt (Joint with Lara K. Pudwell). (N

A I > A = A A

Definition

A partition π of a set S, written $\pi \vdash S$, is a family of disjoint nonempty subsets $B_i \subseteq S$, called blocks, such that $\exists B_i = S$.

We write

$$\pi = B_1/B_2/\ldots/B_k,$$

where

$$\min B_1 < \min B_2 < \cdots < \min B_k,$$

Example

137/25/46 ⊢ [7]

Let

 $\Pi_n = \{\pi : \pi \vdash [n] = \{1, 2, \dots, n\}\}, \text{ and } \Pi_{n,k} = \{\pi \in \Pi_n : \pi \text{ has } k \text{ blocks.}\}.$

Canonical Words

To each set partition is associated a canonical word $a_1 a_2 \dots a_n$ where $a_i = j$ if $i \in B_j$.

イロト イヨト イヨト イヨト

Canonical Words

To each set partition is associated a canonical word $a_1 a_2 \dots a_n$ where $a_i = j$ if $i \in B_j$.

Example 137/25/46 *corresponds to* 1213231.

Definition

Given any word $w \in [k]^n$ we may canonize w by replacing all occurrences of the first letter of w by 1, all occurrences of the next occurring letter by 2, etc.

Definition

Given any word $w \in [k]^n$ we may canonize w by replacing all occurrences of the first letter of w by 1, all occurrences of the next occurring letter by 2, etc.

Example

The canonized form of 47411477 is 12133122.

Adam M. Goyt (Joint with Lara K. Pudwell). (N

Definition

Given any word $w \in [k]^n$ we may canonize w by replacing all occurrences of the first letter of w by 1, all occurrences of the next occurring letter by 2, etc.

Example

The canonized form of 47411477 is 12133122.

There is a bijection between all canonized words of length n and partitions of [n].

• • • • • • • • • • •

Definition

Given any word $w \in [k]^n$ we may canonize w by replacing all occurrences of the first letter of w by 1, all occurrences of the next occurring letter by 2, etc.

Example

The canonized form of 47411477 is 12133122.

There is a bijection between all canonized words of length *n* and partitions of [*n*]. We will say that a partition, π is of length *n*, $\ell(\pi) = n$, if its associated canonical word has *n* letters.

Definition

Given any word $w \in [k]^n$ we may canonize w by replacing all occurrences of the first letter of w by 1, all occurrences of the next occurring letter by 2, etc.

Example

The canonized form of 47411477 is 12133122.

There is a bijection between all canonized words of length n and partitions of [n].

We will say that a partition, π is of length n, $\ell(\pi) = n$, if its associated canonical word has n letters.

From now on we will refer to these canonical words as partitions.

< ロ > < 同 > < 回 > < 回 >

Order Isomorphism

Definition

We say that two words $\alpha = \alpha_1 \alpha_2 \dots \alpha_n$ and $\beta = \beta_1 \beta_2 \dots \beta_n$ are order isomorphic if for i < j

•
$$\alpha_i < \alpha_j$$
 if and only if $\beta_i < \beta_j$, and

•
$$\alpha_i = \alpha_j$$
 if and only if $\beta_i = \beta_j$.

Order Isomorphism

Definition

We say that two words $\alpha = \alpha_1 \alpha_2 \dots \alpha_n$ and $\beta = \beta_1 \beta_2 \dots \beta_n$ are order isomorphic if for i < j

•
$$\alpha_i < \alpha_j$$
 if and only if $\beta_i < \beta_j$, and

•
$$\alpha_i = \alpha_j$$
 if and only if $\beta_i = \beta_j$.

Example

The words 12332 and 34774 are order isomorphic.

(4) (5) (4) (5)

4 A N

Order Isomorphism

Definition

We say that two words $\alpha = \alpha_1 \alpha_2 \dots \alpha_n$ and $\beta = \beta_1 \beta_2 \dots \beta_n$ are order isomorphic if for i < j

•
$$\alpha_i < \alpha_j$$
 if and only if $\beta_i < \beta_j$, and

•
$$\alpha_i = \alpha_j$$
 if and only if $\beta_i = \beta_j$.

Example

The words 12332 and 34774 are order isomorphic.

Example

The words 12332 and 51771 are not order isomorphic.

< ロ > < 同 > < 回 > < 回 >

Pattern Containment

Definition

Let σ be a partition with $\ell(\sigma) = n$ and π be a partition with $\ell(\pi) = k$. We say that σ contains π if

Pattern Containment

Definition

Let σ be a partition with $\ell(\sigma) = n$ and π be a partition with $\ell(\pi) = k$. We say that σ contains π if

• Non-Restricted:

there is a subsequence of σ of length k whose canonization is π .

Pattern Containment

Definition

Let σ be a partition with $\ell(\sigma) = n$ and π be a partition with $\ell(\pi) = k$. We say that σ contains π if

• Non-Restricted:

there is a subsequence of σ of length k whose canonization is π .

2 Restricted:

there is a subsequence of σ of length k that is order isomorphic to

 π .

Example

Let σ = 1213231 *and* π = 121.

Adam M. Goyt (Joint with Lara K. Pudwell). (N

Packing Set Partitions: A New Hope

July 11, 2014 12 / 28

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Example

Let σ = 1213231 *and* π = 121.

Then 212, as in 1213231 is a copy of 121 in the non-restricted sense, but not in the restricted sense.

Adam M. Goyt (Joint with Lara K. Pudwell). (N

Packing Set Partitions: A New Hope

July 11, 2014 12 / 28

Example

Let σ = 1213231 *and* π = 121.

Then 212, as in 1213231 is a copy of 121 in the non-restricted sense, but not in the restricted sense.

And 131, as in 1213231, is a copy of 121 in both the restricted and non-restricted sense.

Adam M. Goyt (Joint with Lara K. Pudwell). (N

Example

Let σ = 1213231 *and* π = 121.

Then 212, as in 1213231 is a copy of 121 in the non-restricted sense, but not in the restricted sense.

And 131, as in 1213231, is a copy of 121 in both the restricted and non-restricted sense.

The non-restricted pattern containment definition allows for the blocks of the copy to be in a different order than the blocks in the pattern. The restricted definition does not.

Adam M. Goyt (Joint with Lara K. Pudwell). (N

Packing Set Partitions: A New Hope

July 11, 2014 12 / 28

★ ∃ > < ∃ >

Definition

Let $E \subseteq \prod_m$ and $\sigma \in \prod$ and $\nu(E, \sigma)$ be the number of copies of partitions from *E* in σ then define:

Adam M. Goyt (Joint with Lara K. Pudwell). (N

Packing Set Partitions: A New Hope

July 11, 2014 13 / 28

Definition

Let $E \subseteq \prod_m$ and $\sigma \in \prod$ and $\nu(E, \sigma)$ be the number of copies of partitions from *E* in σ then define:

 $\mu(E, k, n) = \max\{\nu(E, \sigma) : \sigma \vdash [n] \text{ and } \sigma \text{ has at most } k \text{ blocks}\}$

Adam M. Goyt (Joint with Lara K. Pudwell). (N

Packing Set Partitions: A New Hope

July 11, 2014 13 / 28

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

Let $E \subseteq \prod_m$ and $\sigma \in \prod$ and $\nu(E, \sigma)$ be the number of copies of partitions from *E* in σ then define:

$$\mu(E, k, n) = \max\{\nu(E, \sigma) : \sigma \vdash [n] \text{ and } \sigma \text{ has at most } k \text{ blocks}\}$$
$$d(E, \sigma) = \frac{\nu(E, \sigma)}{\binom{n}{m}}$$

Adam M. Goyt (Joint with Lara K. Pudwell). (N

Packing Set Partitions: A New Hope

July 11, 2014 13 / 28

Definition

Let $E \subseteq \prod_m$ and $\sigma \in \prod$ and $\nu(E, \sigma)$ be the number of copies of partitions from E in σ then define:

$$\mu(E, k, n) = \max\{\nu(E, \sigma) : \sigma \vdash [n] \text{ and } \sigma \text{ has at most } k \text{ blocks}\}$$

$$d(E, \sigma) = \frac{\nu(E, \sigma)}{\binom{n}{m}}$$

$$d(E, k, n) = \frac{\mu(E, k, n)}{\binom{n}{m}}$$

Adam M. Goyt (Joint with Lara K. Pudwell). (N

Density

Theorem

For $n \ge m$ we have that $d(E, k, n-1) \ge d(E, k, n)$ and $d(E, k, n) \ge d(E, k-1, n)$. \Box

Adam M. Goyt (Joint with Lara K. Pudwell). (N

Packing Set Partitions: A New Hope

July 11, 2014 14 / 28

3

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Density

Theorem

For $n \ge m$ we have that $d(E, k, n-1) \ge d(E, k, n)$ and $d(E, k, n) \ge d(E, k-1, n)$. \Box

Definition

Let the packing density of the set $E \subseteq \Pi_m$ be

$$\delta(E) = \lim_{n \to \infty} d(E, n, n) = \lim_{n \to \infty} \lim_{k \to \infty} d(E, k, n).$$

Adam M. Goyt (Joint with Lara K. Pudwell). (N

July 11, 2014 14 / 28

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

Adam M. Goyt (Joint with Lara K. Pudwell). (N

Packing Set Partitions: A New Hope

July 11, 2014 15 / 28

2

Adam M. Goyt (Joint with Lara K. Pudwell). (N

Packing Set Partitions: A New Hope

æ July 11, 2014 16 / 28

≣⇒

Previous Results

These are the results that I presented in Florence 2009.

Partition π	111	112	123	121
Restricted Packing				
Density $\delta_r(\pi)$	1	$2\sqrt{3} - 3$	1	$\frac{2\sqrt{3}-3}{2}$
Unrestricted Packing				
Density $\delta(\pi)$	1	$2\sqrt{3} - 3$	1	$\frac{1}{4}$

Adam M. Goyt (Joint with Lara K. Pudwell). (N

э

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Outline

Death Star ($\delta(121) = \frac{1}{4}$) Destruction

Adam M. Goyt (Joint with Lara K. Pudwell). (N F

Packing Set Partitions: A New Hope

July 11, 2014 18 / 28

Death Star ($\delta(121) = \frac{1}{4}$) Destruction

1212 · · · 12 is a maximizer

Goal: Show that 121212...12 is a maximizer for 121.

Adam M. Goyt (Joint with Lara K. Pudwell). (N

Packing Set Partitions: A New Hope

July 11, 2014 19 / 28

э

イロト イヨト イヨト イヨト

Packing 121 into 2 block Partitions

Theorem

The number of copies of 121 in a partition among those with two blocks is maximized by the partition $\underbrace{R2D2\cdots R2D2}_{n}$

(4) (5) (4) (5)

4 A N

Packing 121 into 2 block Partitions

Theorem

The number of copies of 121 in a partition among those with two blocks is maximized by the partition $\underbrace{1212\cdots 121}_{n}$

4 A N

Packing 121 into 2 block Partitions

Theorem

The number of copies of 121 in a partition among those with two blocks is maximized by the partition $\underbrace{1212\cdots 121}_{}$

n

We prove this by proving a series of Lemmas.

Lemma

Let $\pi \in \prod_{n,2}$ have exactly two blocks. Assume that π consists of *i* 1's and *j* 2's with $i \ge j$. Then the partition

$$\hat{\pi} = \underbrace{11\cdots 1}_{\lceil (i-j-1)/2 \rceil} \underbrace{1212\cdots 121}_{2j+1} \underbrace{11\cdots 1}_{\lceil (i-j-1)/2 \rceil}$$

satisfies $\nu(121, \hat{\pi}) \ge \nu(121, \pi)$.

- < ⊒ →

• Suppose that inside of the partition we have a string of length $\ell+2$ of the form

$$2\underbrace{11\cdots 1}_{\ell}2$$

< ロ > < 同 > < 回 > < 回 >

.

• Suppose that inside of the partition we have a string of length $\ell+2$ of the form

$$(a \ 1's \text{ and } b \ 2's) \quad 2\underbrace{11\cdots 1}_{\ell} 2 \quad (c \ 1's \text{ and } d \ 2's).$$

• Suppose that there are *a* 1's and *b* 2's preceding the initial 2 and *c* 1's and *d* 2's succeeding the final 2.

< ロ > < 同 > < 回 > < 回 >

• Suppose that inside of the partition we have a string of length $\ell+2$ of the form

$$(a \ 1's \text{ and } b \ 2's) \quad 2\underbrace{11\cdots 1}_{\ell} 2 \quad (c \ 1's \text{ and } d \ 2's).$$

- Suppose that there are *a* 1's and *b* 2's preceding the initial 2 and *c* 1's and *d* 2's succeeding the final 2.
- Swapping the intitial 2 with the first 1 in the run gives us a change of (b + c + ℓ − 1) − (a + d + 1) copies.

< 口 > < 同 > < 回 > < 回 > < 回 > <

• Suppose that inside of the partition we have a string of length $\ell+2$ of the form

 $(a \ 1's \text{ and } b \ 2's) \quad 2\underbrace{11\cdots 1}_{\ell} 2 \quad (c \ 1's \text{ and } d \ 2's).$

- Suppose that there are *a* 1's and *b* 2's preceding the initial 2 and *c* 1's and *d* 2's succeeding the final 2.
- Swapping the intitial 2 with the first 1 in the run gives us a change of (b + c + ℓ − 1) − (a + d + 1) copies.
- Swapping the final 2 with the final 1 in the run gives a change of $(a + d + \ell 1) (b + c + 1)$ copies.

• Suppose that inside of the partition we have a string of length $\ell+2$ of the form

 $(a \ 1's \text{ and } b \ 2's) \quad 2\underbrace{11\cdots 1}_{\ell} 2 \quad (c \ 1's \text{ and } d \ 2's).$

- Suppose that there are *a* 1's and *b* 2's preceding the initial 2 and *c* 1's and *d* 2's succeeding the final 2.
- Swapping the intitial 2 with the first 1 in the run gives us a change of (b + c + ℓ − 1) − (a + d + 1) copies.
- Swapping the final 2 with the final 1 in the run gives a change of $(a + d + \ell 1) (b + c + 1)$ copies.
- So we can perform at least one of these without losing copies of 121.

・ロト ・ 四ト ・ ヨト ・ ヨト … ヨ

• Suppose that inside of the partition we have a string of length $\ell+2$ of the form

 $(a \ 1's \text{ and } b \ 2's) \quad 2\underbrace{11\cdots 1}_{\ell} 2 \quad (c \ 1's \text{ and } d \ 2's).$

- Suppose that there are *a* 1's and *b* 2's preceding the initial 2 and *c* 1's and *d* 2's succeeding the final 2.
- Swapping the intitial 2 with the first 1 in the run gives us a change of (b + c + ℓ − 1) − (a + d + 1) copies.
- Swapping the final 2 with the final 1 in the run gives a change of $(a + d + \ell 1) (b + c + 1)$ copies.
- So we can perform at least one of these without losing copies of 121.
- Repeating this process eventually gives us a middle section of alternating 1's and 2's.

Adam M. Goyt (Joint with Lara K. Pudwell). (N

• Start with a partition $\pi \in \Pi_{n,2}$.

イロト イポト イヨト イヨト

- Start with a partition $\pi \in \Pi_{n,2}$.
- We can rearrange it so that it has the structure described in the Lemma. $\underbrace{11\cdots 1}_{a} \underbrace{1212\cdots 121}_{2j+1} \underbrace{11\cdots 1}_{a \text{ or } a-1}$

- Start with a partition $\pi \in \Pi_{n,2}$.
- We can rearrange it so that it has the structure described in the Lemma. $\underbrace{11\cdots 1}_{a} \underbrace{1212\cdots 121}_{2j+1} \underbrace{11\cdots 1}_{a \text{ or } a-1}$
- Changing the last 1 in the run of *a* 1's at the beginning and the first 1 in the run of *a* 1's at the end, we lose $2ja j + 2\binom{j+1}{2}$ copies of 121 and gain $2(a-1)(j+a) + \binom{j+1}{2} + \binom{j+2}{2}$ copies of 121.

- Start with a partition $\pi \in \Pi_{n,2}$.
- We can rearrange it so that it has the structure described in the Lemma. $\underbrace{11\cdots 1}_{a} \underbrace{1212\cdots 121}_{2j+1} \underbrace{11\cdots 1}_{a \text{ or } a-1}$
- Changing the last 1 in the run of *a* 1's at the beginning and the first 1 in the run of *a* 1's at the end, we lose $2ja j + 2\binom{j+1}{2}$ copies of 121 and gain $2(a-1)(j+a) + \binom{j+1}{2} + \binom{j+2}{2}$ copies of 121.
- This is a net gain of $a^2 + (a-1)^2$ copies of 121.

- Start with a partition $\pi \in \Pi_{n,2}$.
- We can rearrange it so that it has the structure described in the Lemma. $\underbrace{11\cdots 1}_{a} \underbrace{1212\cdots 121}_{2j+1} \underbrace{11\cdots 1}_{a \text{ or } a-1}$
- Changing the last 1 in the run of *a* 1's at the beginning and the first 1 in the run of *a* 1's at the end, we lose $2ja j + 2\binom{j+1}{2}$ copies of 121 and gain $2(a-1)(j+a) + \binom{j+1}{2} + \binom{j+2}{2}$ copies of 121.
- This is a net gain of $a^2 + (a-1)^2$ copies of 121.
- The case where there are a 1 1's at the end gives a net gain of $2(a 1)^2$ copies of 121.

- Start with a partition $\pi \in \Pi_{n,2}$.
- We can rearrange it so that it has the structure described in the Lemma. $\underbrace{11\cdots 1}_{a} \underbrace{1212\cdots 121}_{2i+1} \underbrace{11\cdots 1}_{a \text{ or } a-1}$
- Changing the last 1 in the run of *a* 1's at the beginning and the first 1 in the run of *a* 1's at the end, we lose $2ja j + 2\binom{j+1}{2}$ copies of 121 and gain $2(a-1)(j+a) + \binom{j+1}{2} + \binom{j+2}{2}$ copies of 121.
- This is a net gain of $a^2 + (a-1)^2$ copies of 121.
- The case where there are a 1 1's at the end gives a net gain of $2(a 1)^2$ copies of 121.
- Thus the partition $1212 \cdots 121$ is a maximizer in $\Pi_{n,2}$

- ロ ト ・ 同 ト ・ 三 ト ・ 三 ト - -

• Let
$$\alpha_n = \underbrace{1212\cdots 12}_n$$
.

Adam M. Goyt (Joint with Lara K. Pudwell). (N

э

• Let
$$\alpha_n = \underbrace{1212\cdots 12}_n$$
.

• We observe that $\nu(121, \alpha_n) = \frac{1}{24}(n^3 - n)$, and let $g(n) = \frac{1}{24}(n^3 - n)$.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Let
$$\alpha_n = \underbrace{1212\cdots 12}_n$$
.

- We observe that $\nu(121, \alpha_n) = \frac{1}{24}(n^3 n)$, and let $g(n) = \frac{1}{24}(n^3 n)$.
- Given any partition π ∈ Π_n a copy of 121 in π can only use two blocks at a time.

• Let
$$\alpha_n = \underbrace{1212\cdots 12}_n$$
.

- We observe that $\nu(121, \alpha_n) = \frac{1}{24}(n^3 n)$, and let $g(n) = \frac{1}{24}(n^3 n)$.
- Given any partition π ∈ Π_n a copy of 121 in π can only use two blocks at a time.
- Assume that π ∈ Π_n has 3 blocks. The first has a elements the second b elements and the third n − a − b elements. Then the maximal number of copies in π is g(a + b) + g(n − a) + g(n − b). This expression is maximized when a = b = n/3. So the number of copies of 121 in π is bounded by 3g(2n/3) = ^{n³}/₂₇ − ⁿ/₁₂.

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

• Let
$$\alpha_n = \underbrace{1212\cdots 12}_n$$
.

- We observe that $\nu(121, \alpha_n) = \frac{1}{24}(n^3 n)$, and let $g(n) = \frac{1}{24}(n^3 n)$.
- Given any partition π ∈ Π_n a copy of 121 in π can only use two blocks at a time.
- Assume that π ∈ Π_n has 3 blocks. The first has a elements the second b elements and the third n − a − b elements. Then the maximal number of copies in π is g(a + b) + g(n − a) + g(n − b). This expression is maximized when a = b = n/3. So the number of copies of 121 in π is bounded by 3g(2n/3) = n/3/27 n/12.
- A similar argument shows that the maximal number of copies in a partition with *k* blocks is also less that *g*(*n*).

• Let
$$\alpha_n = \underbrace{1212\cdots 12}_n$$
.

- We observe that $\nu(121, \alpha_n) = \frac{1}{24}(n^3 n)$, and let $g(n) = \frac{1}{24}(n^3 n)$.
- Given any partition π ∈ Π_n a copy of 121 in π can only use two blocks at a time.
- Assume that π ∈ Π_n has 3 blocks. The first has a elements the second b elements and the third n − a − b elements. Then the maximal number of copies in π is g(a + b) + g(n − a) + g(n − b). This expression is maximized when a = b = n/3. So the number of copies of 121 in π is bounded by 3g(2n/3) = ^{n³}/₂₇ − ⁿ/₁₂.
- A similar argument shows that the maximal number of copies in a partition with *k* blocks is also less that *g*(*n*).

• Finally,
$$\delta(121) = \lim_{n \to \infty} \frac{g(n)}{\binom{n}{3}} = \frac{1}{4}$$
.

Death Star ($\delta(121) = \frac{1}{4}$) Destruction

The End of the Death Star

Death Star Explosion

Adam M. Goyt (Joint with Lara K. Pudwell). (N

Packing Set Partitions: A New Hope

July 11, 2014 26 / 28

æ

イロト イヨト イヨト イヨト

Ur Oh!

Adam M. Goyt (Joint with Lara K. Pudwell). (N

Packing Set Partitions: A New Hope

July 11, 2014 27 / 28

æ

イロト イヨト イヨト イヨト

Ur Oh! Thank you in Wookiee.

Adam M. Goyt (Joint with Lara K. Pudwell). (N

Packing Set Partitions: A New Hope

July 11, 2014 27 / 28

2

A special thanks to • Christopher Lippay • Julie Lippay, and • Trina Spaeth

- M. H. Albert, M. D. Atkinson, C. C. Handley, D. A. Holton, W. Stromquist, On packing densities of permutations, Electron. J. Combin. 9 (1) (2002) Research Paper 5, 20 pp. URL http://www.combinatorics.org/Volume_9/ Abstracts/v9ilr5.html
- A. Burstein, P. Hästö, T. Mansour, Packing patterns into words, Electron. J. Combin. 9 (2) (2002/03) Research paper 20, 13 pp., Permutation Patterns (Otago, 2003).
 URL http://www.combinatorics.org/Volume_9/ Abstracts/v9i2r20.html
- A. Price, Packing densities of layered patterns, Ph.D. thesis, University of Pennsylvania, Philadelphia, PA, 1997.

イロト 不得 トイヨト イヨト