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Definitions

Definition
Let [n] = {1, 2, . . . , n}.

Definition
A partition π of a set S, written π ` S, is a family of disjoint
nonempty subsets Bi ⊆ S, called blocks, such that ]Bi = S.

We write
π = B1/B2/ . . . /Bk ,

where
min B1 < min B2 < · · · < min Bk .

Let
Πn = {π : π ` [n]}.

Example

137/25/46 ` [7]



Definitions

Definition
Let [n] = {1, 2, . . . , n}.

Definition
A partition π of a set S, written π ` S, is a family of disjoint
nonempty subsets Bi ⊆ S, called blocks, such that ]Bi = S.

We write
π = B1/B2/ . . . /Bk ,

where
min B1 < min B2 < · · · < min Bk .

Let
Πn = {π : π ` [n]}.

Example

137/25/46 ` [7]



Definitions

Definition
Let [n] = {1, 2, . . . , n}.

Definition
A partition π of a set S, written π ` S, is a family of disjoint
nonempty subsets Bi ⊆ S, called blocks, such that ]Bi = S.

We write
π = B1/B2/ . . . /Bk ,

where
min B1 < min B2 < · · · < min Bk .

Let
Πn = {π : π ` [n]}.

Example

137/25/46 ` [7]



Definitions

Definition
Let [n] = {1, 2, . . . , n}.

Definition
A partition π of a set S, written π ` S, is a family of disjoint
nonempty subsets Bi ⊆ S, called blocks, such that ]Bi = S.

We write
π = B1/B2/ . . . /Bk ,

where
min B1 < min B2 < · · · < min Bk .

Let
Πn = {π : π ` [n]}.

Example

137/25/46 ` [7]



Definitions

Definition
A partition of [n] is called layered if it is of the form
12 . . . i/i + 1 . . . j/ . . . /k + 1 . . . n.

Example

123/4/56/7/89 is a layered partition of [9].

Definition
A partition of [n] is called a matching if each of its blocks has at
most 2 elements.

Example

13/2/47/5/6 is a matching of [7]
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Definitions

Definition
Let Φn ⊆ Πn be the set of layered matchings of [n].

Theorem (G)

#Φn = Fn, where Fn is the nth Fibonacci Number, F0 = F1 = 1.

Proof: #Φ0 = 1 because of the empty partition.
#Φ1 = 1, as the only partition in Φ1 is {1}
and #Φn = #Φn−1 + #Φn−2. The first term counts those
partitions in Φn whose last block is {n}. The last term counts
those partitions in Φn whose last block is {n − 1, n}. �
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Set Partition Statistics

Question
How are set partition statistics distributed on Φn?



The rb Statistic

Definition
Let π = B1/B2/ . . . /Bk ∈ Πn and b ∈ Bi , then (b,Bj) is called a
right-bigger pair if i < j and b < max Bj .

Example

Consider σ = 137/25/46. (1, {2, 5}) and (3, {4, 6}) are examples
of right-bigger pairs.

Definition
For π ∈ Πn, let rb(π) be the number of right-bigger pairs in π.

Example

rb(σ) = 6

Observation
Only the statistics rb and ls introduced by Wachs and White
appear to have nontrivial distributions on Φn.
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Set Partition Statistics

Definition
For a partition π = B1/B2/ . . . /Bk ∈ Πn, the contribution of Bi to
rb(π) is number of right bigger pairs of the form (b,Bi ).

Observation
If a partition π = B1/B2/ . . . /Bk is layered, then the contribution
of Bi to rb(π) is min Bi − 1.

Example

12/3/4/56/78
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Distributions

Definition
Let

Fn(q) =
∑
π∈Φn

qrb(π).

Theorem (G.-Sagan)

Fn(q) satisfies the following recursion, F0(q) = 1, F1(q) = 1 and

Fn(q) = qn−1Fn−1(q) + qn−2Fn−2(q).

Proof: F0(q) = 1 because of the empty partition.
F1(q) = 1 as the only partition in Φ1 is {1}.
The first term counts the partitions in Φn, whose last block is {n}.
The second term counts the partitions in Φn, whose last block is
{n − 1, n}. �
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q-Fibonacci Numbers

Definition
For π ∈ Φn, let s(π) be the number of singleton blocks of π and
d(π) be the number of doubleton blocks of π.

Letting

Fn(x , y , q) =
∑
π∈Φn

x s(π)yd(π)qrb(π),

we obtain

F0(x , y , q) = 1, F1(x , y , q) = x ,

and

Fn(x , y , q) = xqn−1Fn−1(x , y , q) + yqn−2Fn−2(x , y , q).
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q-Fibonacci Numbers

These are related to q-Fibonacci numbers introduced by Carlitz
(1974,1975) and Cigler (2003,2004).



q-Fibonacci Numbers

A well-known Fibonacci Identity:

Fn =
∑
2k≤n

(
n − k

k

)
.

Theorem (Carlitz, G.-Sagan)

Fn(x , y , q) =
∑
2k≤n

xn−2kykq(n
2)−k(n−k)

[
n − k

k

]
q

.

We will provide a bijective proof of this theorem, which uses a
bijection with integer partitions.
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Proof

Observation
If σ = 1/2/3/ . . . /n ∈ Φn then rb(σ) =

(n
2

)
.

Let π ∈ Φ(n,k) have doubletons Bi1 ,Bi2 , . . . ,Bik .

Observation
rb(π) =

(n
2

)
−

∑k
j=1 min Bij .

Example

Compare the partitions τ1 = 1/2/3/45/6/7 and
τ2 = 1/2/3/4/5/6/7.
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Proof

Thus, ∑
π∈Φ(n,k)

qrb(π) =
∑

q(n
2)−

∑k
j=1 minBij ,

where the sum is over all possible sets of doubletons
Bi1 ,Bi2 , . . . ,Bik .

We may rewrite this as∑
q(n

2)−
∑k

j=1 minBij = q(n
2)−kn

∑
q

∑k
j=1 n−minBij .
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Proof

Definition
An integer partition of the integer n is a weakly decreasing
sequence of integers λ = (λ1, λ2, . . . , λk) such that
|λ|=̇

∑k
i=1 λi = n; the λi are called parts.

Definition
Let E k

n−1 be the set of integer partitions with exactly k parts, each
of size ≤ n − 1 and consecutive parts differ by at least 2.

It is well known that∑
λ∈E k

n−1

q|λ| = qk2

[
n − k

k

]
q

.

We will provide a bijection between Φ(n,k) and E k
n−1 and use the

fact above to finish the proof.
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π ∈ Φ(n,k) with doubletons Bi1 ,Bi2 , . . . ,Bik to the integer partition
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∑k
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Question
There are similar pattern restricted sets of permutations counted
by the Fibonacci Numbers. There are many statistics on
permutations. What happens if we consider the distribution of
certain statistics on that set? (Currently under investigation)



Table of q-Fibonacci Identities

List of q-Fibonacci Identites

Fn+2(x , y , q) = xn+2q(n+2
2 ) +

∑n
j=0 x jyq(j

2)qjFn−j(xq
j+2, yqj+2, q)

F2n+1(x , y , q) =
∑n

j=0 qj(j+1)F2n−2j(xq
2j+1, yq2j+1, q)

F2n(x , y , q) =
ynqn(n−1) +

∑n−1
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Fm+n(x , y , q) = Fm(x , y , q)Fn(xq
m, yqm, q)

+ yqmFm−1(x , y , q)Fn−1(xq
m+1, yqm+1, q)

F2n+1(x , y , q) = 1
xqn (Fn+1(x , y , q)Fn+1(xq

n, yqn, q)

− y2q2n+1Fn−1(x , y , q)Fn−1(xq
n+2, yqn+2, q)

)



Table of q-Fibonacci Identities

List of q-Fibonacci Identites (cont’d)

Fn(x , y)Fn+1(x , y , q) =∑bn/2c
j=0 xy2jqb(2j)2/2cFn−2j(xq

2j , yq2j , q)Fn−2j(xq
2j+1, yq2j+1, q)

+
∑bn/2c

j=0 xy2jqb(2j+1)2/2cFn−2j(xq
2j , yq2j , q)Fn−2j(xq

2j+1, yq2j+1, q)

F2n−1(x , y , q) =∑n−1
i=1

(
xy2iq2i2F2n−2i−2(xq

2i+2, yq2i+2, q)F2n−2i−1(xq
2i , yq2i , q)

+ xy2i+1q2i(i+1)F2n−2i−3(xq
2i+2, yq2i+2, q)F2n−2i−2(xq

2i+1, yq2i+1, q)
)



Table of q-Fibonacci Identites

List of q-Fibonacci Identites (cont’d)

F3k−1(x , y , q) = Fk(x , y , q)Fk(xqk , yqk , q)Fk−1(xq
2k , yq2k , q)

+ yqk−1Fk−1(x , y , q)Fk−1(xq
k+1, yqk+1, q)Fk−1(xq

2k , yq2k , q)

+ yq2k−1Fk(x , y , q)Fk−1(xq
k , yqk , q)Fk−2(xq

2k+1, yq2k+1, q)

+ y2q3k−2Fk−1(x , y , q)Fk−2(xq
k+1, yqk+1, q)Fk−2(xq

2k+1, yq2k+1, q)

F2n+1(x , y , q) =∑
i ,j x2n−2i−2j+1y i+jqn(n−i−j−1)+i+j(qn−j+i+1)n−i

[
n − j

i

]
q

[
n − i

j

]
q
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