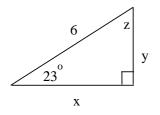
- 1. Given the points A : (4, -2) and B : (-2, 7):
 - (a) Find the distance between A and B
 - (b) Find an equation for the line containing A and B
 - (c) Find the line that is perpendicular to the line you found in part (c) and containing the point (1, -1)
- 2. Find solutions to the following inequalities. Give your solutions in interval notation.

(a)
$$\frac{x^2 - 1}{x^2 + x - 6} \le 0$$

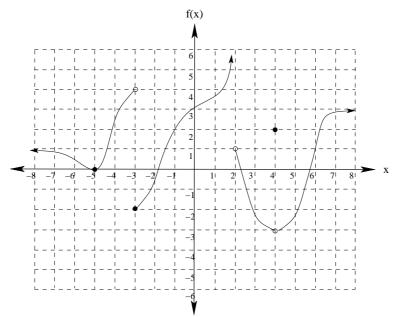
(b) $|2 - 3x| + 4 > 11$


3. Given the function $f(x) = \frac{1}{x-2}$

- (a) What is the domain of f? Give your answer in interval notation.
- (b) Find f(5) and f(2a+4)
- (c) Find $\frac{f(a+h) f(a)}{h}$ (be sure to simplify your answer).

4. Given that
$$f(x) = \frac{1}{2x-3}$$
 and $g(x) = \sqrt{x^2 - 9}$

- (a) Find $\frac{g}{f}(x)$
- (b) Find $g \circ f(x)$
- (c) Find $f \circ g(2)$
- (d) Find the domain of $\frac{g}{f}$? Give your answer in interval notation.
- 5. Deterine whether the following functions are even, odd, or neither:
 - (a) $f(x) = x^3 x$ (b) $g(x) = (x^3 - x^x)^2$ (c) $h(x) = x^3 \sin x$
- 6. Find the exact value of each of the following:
 - (a) $\sin\left(\frac{7\pi}{4}\right)$ (b) $\cos\left(\frac{4\pi}{3}\right)$ (c) $\cos\left(-\frac{53\pi}{2}\right)$ (d) $\sin^{-1}\left(\frac{1}{\sqrt{2}}\right)$ (e) $\cos^{-1}\left(-1\right)$ (f) $\sin^{-1}\left(-\frac{\sqrt{3}}{2}\right)$


- 7. Find all solutions to the following equations. Give the exact answers.
 - (a) $2\sin 3x = \sqrt{3}$
 - (b) $\sin^2(x) \sin(x) = 0$
- 8. Find the values of x, y and z in the triangle shown below:

- 9. For each function below, find the amplitude and period of the function, and then carefully draw the graph the the function.
 - (a) $y = 2\sin(3x) + 2$ (b) $y = 3\cos(x - \frac{\pi}{3})$
- 10. Verify the following identity by transforming the left hand side into the right hand side:

 $\frac{1}{1-\sin x} - \frac{1}{1+\sin x} = 2\tan x \sec x$

11. A function f is graphed below. Find the following:

- (a) f(-5), f(-3), and f(4)
- (b) find the domain and range of \boldsymbol{f}
- (c) find the intervals where f is decreasing
- (d) find $\lim_{x \to 4} f(x)$
- (e) find $\lim_{x\to 2^-} f(x)$ and $\lim_{x\to 2^+} f(x)$
- (f) find $\lim_{x \to -\infty} f(x)$ and $\lim_{x \to \infty} f(x)$

- (g) find the points where f(x) is discontinuous, and classify each point of discontinuity.
- 12. Evaluate the following limits:

(a)
$$\lim_{x \to 2} \frac{3x+7}{\sqrt{5x-1}}$$

(b)
$$\lim_{x \to \frac{3}{2}} \frac{2x^2+x-6}{4x^2-4x-3}$$

(c)
$$\lim_{x \to 2} \frac{x^4-16}{x^2-x-2}$$

(d)
$$\lim_{x \to 0^+} \frac{1}{\sqrt{x}}$$

(e)
$$\lim_{x \to \infty} \frac{(3x-5)(2x-3)}{(x+7)(5x-2)}$$

13. Given the function

$$f(x) = \begin{cases} x^2 & \text{if } x < 1\\ 2 & \text{if } x = 1\\ 4 - x^2 & \text{if } x > 1 \end{cases}$$

- (a) Graph f(x).
- (b) Find $\lim_{x \to 1^-} f(x)$, $\lim_{x \to 1^+} f(x)$, and $\lim_{x \to 1} f(x)$
- (c) Is f(x) continuous at x = 1? Justify your answer.
- 14. Given that $f(x) = x^3 + 5$, $\lim_{x \to 2} f(x) = 13$, and $\epsilon = .01$, find the largest δ such that if $0 < |x 2| < \delta$, then $|f(x) 13| < \epsilon$.
- 15. Use the formal definition of a limit to prove that $\lim_{x\to 6} 5x 21 = 9$.

16. Let
$$f(x) = \frac{x^2 - x - 2}{x^2 - 2x}$$
.

- (a) Find the values of x at which f is discontinuous.
- (b) Find all vertical and horizonal asymptotes of f.
- 17. Find the x values at which $f(x) = \frac{\sqrt{9-x^2}}{x^4 16}$ is continuous.
- 18. Use the Intermediate Value Theorem to show $x^5 3x^4 2x^3 x + 1 = 0$ has a solution between 0 and 1.