Math 261 Final Exam - Practice Problem Solutions

1. A function f is graphed below.

- (a) Find f(0), f(-2), f(1), and f(4) $f(0) = 3; f(-2) \approx 2.4; f(1)$ is undefined; f(4) = 0
- (b) Find the domain and range of fDomain: $(-\infty, 1) \cup (1, \infty)$ Range: $[-2, \infty)$
- (c) Find the intervals where f'(x) is positive f'(x) > 0 on $(-4, 1) \cup (4, \infty)$
- (d) Find the intervals where f''(x) is negative. f''(x) < 0 on $(-3, 0) \cup (1, 3) \cup (4, \infty)$
- (e) Find $\lim_{x \to -2} f(x)$ $\lim_{x \to -2} f(x) \approx 2.4$
- (f) find $\lim_{x \to 4^-} f(x)$ and $\lim_{x \to 4^+} f(x)$ $\lim_{x \to 4^-} f(x) = -2; \lim_{x \to 4^+} f(x) = 0$
- (g) find $\lim_{x \to -1^{-}} f(x)$ and $\lim_{x \to -1^{+}} f(x)$ $\lim_{x \to -1^{-}} f(x) = \lim_{x \to -1^{+}} f(x) \approx 2.9$
- (h) find $\lim_{x \to -\infty} f(x)$ and $\lim_{x \to \infty} f(x)$ $\lim_{x \to -\infty} f(x) = \infty$ and $\lim_{x \to \infty} f(x) = 4$
- (i) find the points where f(x) is discontinuous, and classify each point of discontinuity. f has a removable discontinuity at x = -3, an infinite discontinuity at x = 1, and a jump discontinuity at x = 4.

2. Evaluate the following limits:

(a)
$$\lim_{x \to 1} \frac{2x^2 - 5x - 3}{3x^2 - 4x - 15} = \lim_{x \to 1} \frac{(2x+1)(x-3)}{(3x+5)(x-3)} = \frac{(2x+1)}{(3x+5)} = \frac{3}{8}$$

(b)
$$\lim_{x \to 3} \frac{2x^2 - 5x - 3}{3x^2 - 4x - 15} = \lim_{x \to 3} \frac{(2x+1)(x-3)}{(3x+5)(x-3)} = \frac{(2x+1)}{(3x+5)} = \frac{7}{10}$$

(c) $\lim_{x\to 2} \sqrt{2x-4}$ is undefined since $\sqrt{2x-4}$ is only defined for $x \ge 2$.

- (d) $\lim \cos x = -1$
- (e) $\lim_{x \to \infty} \cos x$ is undefined ($\cos x$ continues to oscillate from 1 to -1 and back)
- (f) $\lim_{x \to \infty} \frac{2x^2 5x 3}{3x^2 4x 15} = \frac{2}{3}$ (g) $\lim_{x \to \infty} \frac{2x^2 - 5x - 3}{3x^3 - 4x - 15} = 0$
- 3. Given the function

$$f(x) = \begin{cases} x+5 & \text{if } x \le -2\\ x^2 - 1 & \text{if } |x| < 2\\ 4 - x & \text{if } x \ge 2 \end{cases}$$

(a) Graph f(x).

- (b) Find $\lim_{x \to 2^{-}} f(x)$, $\lim_{x \to 2^{+}} f(x)$, and $\lim_{x \to -2} f(x)$ $\lim_{x \to 2^{-}} f(x) = 3$, $\lim_{x \to 2^{+}} f(x) = 2$, and $\lim_{x \to -2} f(x) = 3$
- (c) Is f(x) continuous at x = 1? Justify your answer. Yes. In an interval containing x = 1, the function f is defined by $x^2 - 1$ which is a polynomial and hence is continuous.
- 4. Give the formal ϵ δ definition of the linit of a function as presented in class. Then draw a diagram illustrating the definition. Finally, write the definition informally in your own words.

Let f be defined on an open interval containing a, except possibly at a itself, and let L be a real number. The statement $\lim f(x) = L$ means that for every $\epsilon > 0$ there is a $\delta > 0$ such that if $0 < |x - a| < \delta$, then $|f(x) - L| < \epsilon$.

Intuitively, what the formal definition of a limit says is that $\lim_{x\to a} f(x) = L$ means that if we set an error tolerance of ϵ on the *y*-axis, then no matter how small we set our error tolerance, it is possible to choose an error tolerance δ on the *x*-axis so that all points within δ of *a* on the *x*-axis get mapped by the function to points that are within ϵ of our limit value *L*.

5. Given that $f(x) = 3x^2 - 1$, $\lim_{x \to 1} f(x) = 2$, and $\epsilon = .01$, find the largest δ such that if $0 < |x - 1| < \delta$, then $|f(x) - 2| < \epsilon$. We need $|f(x) - 2| < \epsilon$. That is $|3x^2 - 1 - 2| < .01$ or $|3x^2 - 3| < .01$ Therefore, $-.01 < 3x^2 - 3 < .01$, or $2.99 < 3x^2 < 3.01$, so $\frac{2.99}{3} < x^2 < \frac{3.01}{3}$. Hence $\sqrt{\frac{2.99}{3}} < x < \sqrt{\frac{3.01}{3}}$ or, rounding, .998331942 < x < 1.001166528. Thus -.00166806 < x - 1 < .00166528. So we can take $\delta < \sqrt{\frac{3.01}{3}} - 1 \approx .00166528$ 6. Use the formal definition of a limit to prove that $\lim_{x \to 2} 5 - 2x = 1$. Suppose $|f(x) - L| < \epsilon$. Then $|5 - 2x - 1| < \epsilon$ or $|4 - 2x| < \epsilon$. That is, $|2(2 - x)| < \epsilon$, or $2|2 - x| < \epsilon$, so $|x - 2| < \frac{\epsilon}{2}$. Let $\delta \le \frac{\epsilon}{2}$. Then if $0 < |x - 2| < \delta \le \frac{\epsilon}{2}$, $2|x - 2| < \epsilon$. Therefore $|2x - 4| = |4 - 2x| = |5 - 2x - 1| < \epsilon$. That is, $|f(x) - 1| < \epsilon$. Hence $\lim_{x \to 1} f(x) = 1$

$$2x^2 - 4x^2$$

7. Let
$$f(x) = \frac{2x^2 - 4x}{x^2 - x - 2}$$
.

(a) Find the values of x at which f is discontinuous.

Notice that $f(x) = \frac{2x^2 - 4x}{x^2 - x - 2} = \frac{2x(x - 2)}{(x - 2)(x + 1)}$. Since f is a rational function, it is continuous ever

Since f is a rational function, it is continuous everywhere except where the denominator is zero. Therefore, f is discontinuous at x = 2 and at x = -1.

(b) Find all vertical and horizonal asymptotes of f.
Since the disontinuity at x = 2 is removable, f only has one vertical asymptote at x = −1.
Since lim f(x) = 2, f has a horizontal asymptote at y = 2.

8. Find the x values at which $f(x) = \sqrt{3-2x} + \frac{1}{\sqrt{2x+5}}$ is continuous.

Since f consists of a sum of square roots of polynomial functions, f is continuous wherever it is defined. Thus we need $3-2x \ge 0$, or $x \le \frac{3}{2}$ and we need 2x+5 > 0, or $x > -\frac{5}{2}$. Thus f is continuous on the interval $(-\frac{5}{2}, \frac{3}{2}]$.

- 9. (a) Use the Intermediate Value Theorem to show $f(x) = 2x^3 + 3x 4$ has a root between 0 and 1. First notice that f is a polynomial, and hence is continuous everywhere, so the IVT applies in this situation. Next, f(0) = -4, and f(1) = 1, so by the IVT, f attains every value between -4 and 1 at leat once for some x-value in the interval (0, 1). In particular, there must be some c in the interval (0, 1) with f(c) = 0.
 - (b) Use Newton's method to approximate this root to 4 decimal places.
 Recall that Newton's method uses the derivative to recursively approximate a root of a function. Given an initial guess x₀, we compute approximations using the formula: x_{n+1} = x_n f(x_n)/f'(x_n)
 Here, f'(x) = 6x² + 3, and we will take x₀ = .5.

Then $x_1 = 1$; $x_2 = .8888889$, $x_3 = .8796739$, $x_4 = .87961488$, $x_5 = .87961488$, so our approximation of the root to four decimal places is :x = .8796.

- 10. Find the derivative $y' = \frac{dy}{dx}$ for each of the following:
 - (a) $y = \pi^3 + \pi^2 x \pi x^3 + x^{\pi}$ $y' = \pi^2 - 3\pi x^2 + \pi x^{\pi - 1}$ (b) $y = \cos(3x) + \sin(3x)$ $y' = -3\sin(3x) + 3\cos(3x)$

(c)
$$y = x^4 + \cos(x^4)$$

 $y' = 4x^3 - 4x^3 \sin(x^4)$

$$\begin{array}{l} (\mathrm{d}) \ y = \sqrt{x} \tan x \\ y' = \frac{1}{2}x^{-\frac{1}{2}} \tan x + x^{\frac{1}{2}} \sec^{2}(x) \\ (\mathrm{e}) \ y = \sec^{3}(x^{3}) \\ y' = 3 \sec^{2}(x^{3}) \cdot \sec(x^{3}) \tan(x^{3}) \cdot 3x^{2} = 9x^{2} \sec^{3}(x^{3}) \tan(x^{3}) \\ (\mathrm{f}) \ y = \frac{3-x}{x^{2}+1} \\ y' = \frac{(1)(x^{2}+1)-(3-x)(2x)}{(x^{2}+1)^{2}} = \frac{x^{2}-6x-1}{(x^{2}+1)^{2}}. \\ (\mathrm{g}) \ y = \frac{x^{2} \cos x}{x + \sin(3-2x)} \\ y' = \frac{(2x \cos x - x^{2} \sin x)(x + \sin(3-2x)) - (x^{2} \cos x)(1-2\cos(3-2x))}{(x + \sin(3-2x))^{2}} \\ (\mathrm{h}) \ y = \sin^{2}(\tan(x^{3}-5)) \\ y' = 2 \sin(\tan(x^{3}-5)) \cos(\tan(x^{3}-5)) \sec^{2}(x^{3}-5) \cdot 3x^{2} \\ (\mathrm{i}) \ x^{2} - 3xy + y^{2} = 0 \\ \mathrm{Differentiating implicitly}, \ 2x - 3y - 3xy' + 2yy' = 0, \ \mathrm{so} \ 2yy' - 3xy' = 3y - 2x, \ \mathrm{or} \ y'(2y - 3x) = 3y - 2x. \\ \mathrm{Hence} \ y' = \frac{3y-2x}{2y-3x} \end{array}$$

- (j) $2x^2y 5xy 3y^2 = 10$ Differentiating implicitly, $4xy + 2x^2y' 5y 5xy' 6yy' = 0$, so $4xy 5y = -2x^2y' + 5xy' + 6yy' = y'(-2x^2 + 5x + 6y)$. Hence $y' = \frac{4xy 5y}{-2x^2 + 5x + 6y}$
- 11. Use the formal limit definition of the derivative to find the derivative of the following:

$$\begin{aligned} \text{(a)} \quad f(x) &= 3x^2 - x + 5 \\ f'(x) &= \lim_{h \to 0} \frac{3(x+h)^2 - (x+h) + 5 - (3x^2 - x + 5)}{h} = \lim_{h \to 0} \frac{3x^2 + 6xh + 3h^2 - x - h - 3x^2 + x - 5}{h} \\ &= \lim_{h \to 0} \frac{6xh + 3h^2 - h}{h} = \lim_{h \to 0} 6x + 3h - 1 = 6x - 1 \\ \text{(b)} \quad f(x) &= \frac{2}{x-1} \\ f'(x) &= \lim_{h \to 0} \frac{\frac{2}{x+h-1} - \frac{2}{x-1}}{h} = \lim_{h \to 0} \frac{\frac{2(x-1) - 2(x+h-1)}{(x+h-1)(x-1)}}{h} \\ &= \lim_{h \to 0} \frac{2x - 2 - 2x - 2h + 2}{(x+h-1)(x-1)} \frac{1}{h} \\ &= \lim_{h \to 0} \frac{-2h}{(x+h-1)(x-1)} \frac{1}{h} = \lim_{h \to 0} \frac{-2}{(x+h-1)(x-1)} = \frac{-2}{(x-1)^2} \\ \text{(c)} \quad f(x) &= \sqrt{x+1} \\ f'(x) &= \lim_{h \to 0} \frac{\sqrt{x+h+1} - \sqrt{x+1}}{h} \cdot \frac{\sqrt{x+h+1} + \sqrt{x+1}}{\sqrt{x+h+1} + \sqrt{x+1}} \\ &= \lim_{h \to 0} \frac{x+h+1 - (x+1)}{h} = \lim_{h \to 0} \frac{h}{h(\sqrt{x+h+1} + \sqrt{x+1})} \\ &= \lim_{h \to 0} \frac{1}{\sqrt{x+h+1} + \sqrt{x+1}} = \frac{1}{2\sqrt{x+1}} \end{aligned}$$

12. Use the quotient rule to derive the formula for the derivative of $\sec(x)$. Recall that $\sec x = \frac{1}{\cos x}$, so by the quotient rule: $\frac{d}{dx} \sec x = \frac{d}{dx} \frac{1}{\cos x} = \frac{0 - (-\sin x)}{\cos^2 x} = \frac{\sin x}{\cos^2 x} = \frac{1}{\cos x} \cdot \frac{\sin x}{\cos x} = \sec x \tan x.$