1. A function f is graphed below.

- (a) Find $f(0)$, $f(-2)$, $f(1)$, and $f(4)$ $f(0) = 3; f(-2) \approx 2.4; f(1)$ is undefined; $f(4) = 0$
- (b) Find the domain and range of f Domain: $(-\infty, 1) \cup (1, \infty)$ Range: $[-2, \infty)$
- (c) Find the intervals where $f'(x)$ is positive $f'(x) > 0$ on $(-4, 1) \cup (4, \infty)$
- (d) Find the intervals where $f''(x)$ is negative. $f''(x) < 0$ on $(-3,0) \cup (1,3) \cup (4,∞)$
- (e) Find $\lim_{x \to -2} f(x)$ $\lim_{x \to -2} f(x) \approx 2.4$
- (f) find $\lim_{x \to 4^-} f(x)$ and $\lim_{x \to 4^+} f(x)$ $\lim_{x \to 4^{-}} f(x) = -2; \lim_{x \to 4^{+}} f(x) = 0$
- (g) find $\lim_{x \to -1^{-}} f(x)$ and $\lim_{x \to -1^{+}} f(x)$ $\lim_{x \to -1^{-}} f(x) = \lim_{x \to -1^{+}} f(x) \approx 2.9$
- (h) find $\lim_{x \to -\infty} f(x)$ and $\lim_{x \to \infty} f(x)$ $\lim_{x \to -\infty} f(x) = \infty$ and $\lim_{x \to \infty} f(x) = 4$
- (i) find the points where $f(x)$ is discontinuous, and classify each point of discontinuity. f has a removable discontinuity at $x = -3$, an infinite discontinuity at $x = 1$, and a jump discontinuity at $x = 4$.

2. Evaluate the following limits:

(a)
$$
\lim_{x \to 1} \frac{2x^2 - 5x - 3}{3x^2 - 4x - 15} = \lim_{x \to 1} \frac{(2x + 1)(x - 3)}{(3x + 5)(x - 3)} = \frac{(2x + 1)}{(3x + 5)} = \frac{3}{8}
$$

(b)
$$
\lim_{x \to 3} \frac{2x^2 - 5x - 3}{3x^2 - 4x - 15} = \lim_{x \to 3} \frac{(2x + 1)(x - 3)}{(3x + 5)(x - 3)} = \frac{(2x + 1)}{(3x + 5)} = \frac{7}{10}
$$

(c) $\lim_{x\to 2} \sqrt{2x-4}$ is undefined since $\sqrt{2x-4}$ is only defined for $x \ge 2$.

- (d) $\lim_{x \to \pi} \cos x = -1$
- (e) $\lim_{x \to \infty} \cos x$ is undefined (cos x continues to oscillate from 1 to −1 and back)
- (f) $\lim_{x \to \infty} \frac{2x^2 5x 3}{3x^2 4x 15}$ $\frac{2x^2 - 5x - 3}{3x^2 - 4x - 15} = \frac{2}{3}$ 3 (g) $\lim_{x \to \infty} \frac{2x^2 - 5x - 3}{3x^3 - 4x - 15}$ $\frac{2x-3x-3}{3x^3-4x-15} = 0$
- 3. Given the function

$$
f(x) = \begin{cases} x+5 & \text{if } x \le -2 \\ x^2 - 1 & \text{if } |x| < 2 \\ 4 - x & \text{if } x \ge 2 \end{cases}
$$

(a) Graph $f(x)$.

- (b) Find $\lim_{x \to 2^{-}} f(x)$, $\lim_{x \to 2^{+}} f(x)$, and $\lim_{x \to -2} f(x)$ $\lim_{x \to 2^{-}} f(x) = 3$, $\lim_{x \to 2^{+}} f(x) = 2$, and $\lim_{x \to -2} f(x) = 3$
- (c) Is $f(x)$ continuous at $x = 1$? Justify your answer. Yes. In an interval containing $x = 1$, the function f is defined by $x^2 - 1$ which is a polynomial and hence is continuous.
- 4. Give the formal ϵ δ definition of the linit of a function as presented in class. Then draw a diagram illustrating the definition. Finally, write the definition informally in your own words.

Let f be defined on an open interval containing a, except possibly at a itself, and let L be a real number. The statement $\lim_{x\to a} f(x) = L$ means that for every $\epsilon > 0$ there is a $\delta > 0$ such that if $0 < |x - a| < \delta$, then $|f(x) - L| < \epsilon$.

Intuitively, what the formal definition of a limit says is that $\lim_{x\to a} f(x) = L$ means that if we set an error tolerance of ϵ on the y-axis, then no matter how small we set our error tolerance, it is possible to choose an error tolerance δ on the x-axis so that all points within δ of a on the x-axis get mapped by the function to points that are within ϵ of our limit value L.

5. Given that $f(x) = 3x^2 - 1$, $\lim_{x \to 1} f(x) = 2$, and $\epsilon = .01$, find the largest δ such that if $0 < |x - 1| < \delta$, then $|f(x) - 2| < \epsilon$. We need $|f(x) - 2| < \epsilon$. That is $|3x^2 - 1 - 2| < 0.01$ or $|3x^2 - 3| < 0.01$ Therefore, $-0.01 < 3x^2 - 3 < 0.01$, or $2.99 < 3x^2 < 3.01$, so $\frac{2.99}{3} < x^2 < \frac{3.01}{3}$. Hence $\sqrt{\frac{2.99}{3}} < x < \sqrt{\frac{3.01}{3}}$ or, rounding, .998331942 $< x < 1.001166528$. Thus $-.00166806 < x - 1 < .00166528$. So we can take $\delta < \sqrt{\frac{3.01}{3}} - 1 \approx .00166528$ 6. Use the formal definition of a limit to prove that $\lim_{x\to 2} 5 - 2x = 1$. Suppose $|f(x) - L| < \epsilon$. Then $|5 - 2x - 1| < \epsilon$ or $|4 - 2x| < \epsilon$. That is, $|2(2-x)| < \epsilon$, or $2|2-x| < \epsilon$, so $|x-2| < \frac{\epsilon}{2}$. Let $\delta \leq \frac{\epsilon}{2}$. Then if $0 < |x - 2| < \delta \leq \frac{\epsilon}{2}$, $2|x - 2| < \epsilon$. Therefore $|2x-4| = |4-2x| = |5-2x-1| < \epsilon$. That is, $|f(x)-1| < \epsilon$. Hence $\lim_{x\to 2} f(x) = 1$

7. Let $f(x) = \frac{2x^2 - 4x}{x}$ $\frac{2x}{x^2-x-2}$.

> (a) Find the values of x at which f is discontinuous. Notice that $f(x) = \frac{2x^2 - 4x}{x}$

 $\frac{2x^2 - 4x}{x^2 - x - 2} = \frac{2x(x - 2)}{(x - 2)(x + 1)}.$ Since f is a rational function, it is continuous everywhere except where the denominator is zero. Therefore, f is discontinuous at $x = 2$ and at $x = -1$.

(b) Find all vertical and horizonal asymptotes of f. Since the disontinuity at $x = 2$ is removable, f only has one vertical asymptote at $x = -1$. Since $\lim_{x \to \infty} f(x) = 2$, f has a horizontal asymptote at $y = 2$.

8. Find the x values at which $f(x) = \sqrt{3 - 2x} + \frac{1}{\sqrt{2x}}$ $\frac{1}{\sqrt{2x+5}}$ is continuous.

Since f consists of a sum of sqare roots of polynomial functions, f is continuous wherever it is defined. Thus we need $3-2x \geq 0$, or $x \leq \frac{3}{2}$ and we need $2x + 5 > 0$, or $x > -\frac{5}{2}$. Thus f is continuous on the interval $\left(-\frac{5}{2}, \frac{3}{2}\right]$.

- 9. (a) Use the Intermediate Value Theorem to show $f(x) = 2x^3 + 3x 4$ has a root between 0 and 1. First notice that f is a polynomial, and hence is continuous everywhere, so the IVT applies in this situation. Next, $f(0) = -4$, and $f(1) = 1$, so by the IVT, f attains every value between -4 and 1 at leat once for some x-value in the interval $(0, 1)$. In particular, there must be some c in the interval $(0, 1)$ with $f(c) = 0$.
	- (b) Use Newton's method to approximate this root to 4 decimal places. Recall that Newton's method uses the derivative to recursively approximate a root of a function. Given an initial guess x_0 , we compute approximations using the formula: $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ $\overline{f'(x_n)}$ Here, $f'(x) = 6x^2 + 3$, and we will take $x_0 = .5$.

Then $x_1 = 1$; $x_2 = .8888889$, $x_3 = .8796739$, $x_4 = .87961488$, $x_5 = .87961488$, so our approximation of the root to four decimal places is $:x = .8796$.

- 10. Find the derivative $y' = \frac{dy}{dx}$ for each of the following:
	- (a) $y = \pi^3 + \pi^2 x \pi x^3 + x^{\pi}$ $y' = \pi^2 - 3\pi x^2 + \pi x^{\pi-1}$ (b) $y = cos(3x) + sin(3x)$ $y' = -3\sin(3x) + 3\cos(3x)$ (c) $y = x^4 + \cos(x^4)$

$$
y' = 4x^3 - 4x^3 \sin(x^4)
$$

(d)
$$
y = \sqrt{x} \tan x
$$

\n $y' = \frac{1}{2}x^{-\frac{1}{2}} \tan x + x^{\frac{1}{2}} \sec^2(x)$
\n(e) $y = \sec^3(x^3)$
\n $y' = 3 \sec^2(x^3) \cdot \sec(x^3) \tan(x^3) \cdot 3x^2 = 9x^2 \sec^3(x^3) \tan(x^3)$
\n(f) $y = \frac{3-x}{x^2+1}$
\n $y' = \frac{(1)(x^2+1)-(3-x)(2x)}{(x^2+1)^2} = \frac{x^2-6x-1}{(x^2+1)^2}$.
\n(g) $y = \frac{x^2 \cos x}{x + \sin(3-2x)}$
\n $y' = \frac{(2x \cos x - x^2 \sin x)(x + \sin(3-2x)) - (x^2 \cos x)(1-2 \cos(3-2x))}{(x + \sin(3-2x))^2}$
\n(h) $y = \sin^2(\tan(x^3 - 5))$
\n $y' = 2 \sin(\tan(x^3 - 5)) \cos(\tan(x^3 - 5)) \sec^2(x^3 - 5) \cdot 3x^2$
\n(i) $x^2 - 3xy + y^2 = 0$
\nDifferentiating implicitly, $2x - 3y - 3xy' + 2yy' = 0$, so $2yy' - 3xy' = 3y - 2x$, or $y'(2y - 3x) = 3y - 2x$.
\nHence $y' = \frac{3y - 2x}{2y - 3x}$

- (j) $2x^2y 5xy 3y^2 = 10$ Differentiating implicitly, $4xy + 2x^2y' 5y 5xy' 6yy' = 0$, so $4xy 5y = -2x^2y' +$ $5xy' + 6yy' = y'(-2x^2 + 5x + 6y)$. Hence $y' = \frac{4xy - 5y}{-2x^2 + 5x + 6y}$
- 11. Use the formal limit definition of the derivative to find the derivative of the following:

(a)
$$
f(x) = 3x^2 - x + 5
$$

\n $f'(x) = \lim_{h \to 0} \frac{3(x+h)^2 - (x+h) + 5 - (3x^2 - x + 5)}{h} = \lim_{h \to 0} \frac{3x^2 + 6xh + 3h^2 - x - h - 3x^2 + x - 5}{h}$
\n $= \lim_{h \to 0} \frac{6xh + 3h^2 - h}{h} = \lim_{h \to 0} 6x + 3h - 1 = 6x - 1$
\n(b) $f(x) = \frac{2}{x-1}$
\n $f'(x) = \lim_{h \to 0} \frac{\frac{2}{x+h-1} - \frac{2}{x-1}}{h} = \lim_{h \to 0} \frac{\frac{2(x-1) - 2(x+h-1)}{(x+h-1)(x-1)}}{h}$
\n $= \lim_{h \to 0} \frac{2x - 2 - 2x - 2h + 2}{(x+h-1)(x-1)} \frac{1}{h}$
\n $= \lim_{h \to 0} \frac{-2h}{(x+h-1)(x-1)} \frac{1}{h} = \lim_{h \to 0} \frac{-2}{(x+h-1)(x-1)} = \frac{-2}{(x-1)^2}$
\n(c) $f(x) = \sqrt{x+1}$
\n $f'(x) = \lim_{h \to 0} \frac{\sqrt{x+h+1} - \sqrt{x+1}}{h} \cdot \frac{\sqrt{x+h+1} + \sqrt{x+1}}{\sqrt{x+h+1} + \sqrt{x+1}}$
\n $= \lim_{h \to 0} \frac{x+h+1 - (x+1)}{h(\sqrt{x+h+1} + \sqrt{x+1})} = \lim_{h \to 0} \frac{h}{h(\sqrt{x+h+1} + \sqrt{x+1})}$
\n $= \lim_{h \to 0} \frac{1}{\sqrt{x+h+1} + \sqrt{x+1}} = \frac{1}{2\sqrt{x+1}}$

12. Use the quotient rule to derive the formula for the derivative of $sec(x)$. Recall that $\sec x = \frac{1}{\cos x}$, so by the quotient rule: $\frac{d}{dx} \sec x = \frac{d}{dx} \frac{1}{\cos x} = \frac{0 - (-\sin x)}{\cos^2 x} = \frac{\sin x}{\cos^2 x} = \frac{1}{\cos x} \cdot \frac{\sin x}{\cos x} = \sec x \tan x.$