Math 261 Integration Handout 11/20/2007

Antiderivatives and Integration

A. Antiderivatives

A function F is an **antiderivative** of f if $F'(x) = f(x)$. **Example:** $F(x) = x^3$ is an antiderivative of $f(x) = 3x^2$, since $F'(x) = 3x^2 = f(x)$. Note: If $F(x)$ is an antiderivative of f, then so is $F(x) + C$ for any constant C.

B. Indefinite Integrals

The notation $\int f(x) dx = F(x) + C$ is used to denote the indefinite integral of the function $f(x)$ with respect to the variable x. Here, $F(x) + C$ is the general antiderivative of $f(x)$.

C. Integration Rules

1. Integrating a constant: $\int a \, dx = ax + C$ for any constant a. Example: $\int \frac{3}{5}$ 2 $dx = \frac{3}{2}$ 2 $x + C$

2. Integrating Power Functions: $\int x^r dx = \frac{1}{x^r}$ $r+1$ $x^{r+1} + C$ **Example:** $\int x^{\frac{3}{2}} dx = \frac{2}{5}$ 5 $x^{\frac{5}{2}} + C$

3. Constant Multiples: $\int af(x) dx = a \int f(x) dx$ for any constant a. **Example:** $\int 7x^{\frac{3}{2}} dx = 7 \int x^{\frac{3}{2}} dx = (7)^{\frac{2}{5}}$ 5 $x^{\frac{5}{2}} + C = \frac{14}{5}$ 5 $x^{\frac{5}{2}} + C$

4. Sums and Differences: $\int f(x) + g(x) dx = \int f(x) dx + \int g(x) dx$, and $\int f(x) - g(x) dx = \int f(x) dx - \int g(x) dx$ for any functions f and g. Example: $\int 3x^2 + x^{\frac{3}{2}} dx = \int 3x^2 dx + \int x^{\frac{3}{2}} dx = x^3 + \frac{2}{5}$ 5 $x^{\frac{5}{2}} + C$

D. Definite Integrals

Approximating Area Using Inscribed and Circumscribed Rectangles:

The area of a region under a continuous function $f(x)$ on an interval [a, b] can be approximated using rectangles. If the rectangles are of equal width, then $\Delta x = \frac{b-a}{n}$ is the width of each rectangle, and $f(u_k)$ gives the minimum height (the height of the inscribed rectangle) in the kth subinterval, while $f(v_k)$ gives the maximum height (the height of the circumscribed rectangle) in the ith subinterval.

Then $A_{IP} = \sum_{n=1}^{n} A_{IP}$ $k=1$ $f(u_k)\Delta x$ and $A_{CP} = \sum_{k=1}^{n}$ $k=1$ $f(v_k)\Delta x$ give the estimate of the area by inscribed rectangles and circumscribed rectangles, respectively.

Moreover,
$$
A_{IP} = \sum_{k=1}^{n} f(u_k) \Delta x \le A \le A_{CP} = \sum_{k=1}^{n} f(v_k) \Delta x
$$
, and $\lim_{n \to \infty} A_{IP} = \lim_{n \to \infty} A_{CP} = A$.
Approximating Area Using Partitions:

Approximating Area Using Partitions:

Given a function f on an interval $[a, b]$, we can also appoximate area using partitions that do not necessarily have rectangles all of the same width. A partition P of the interval $[a, b]$ of size n is a set of numbers $a = x_0 < x_1 < x_2 < \ldots < x_n - 1 < x_n = b$. $\Delta x_k = x_k = x_{k-1}$ is the width of the kth subinterval, and $||P||$, the norm of the partition P, is the width of the widest of all the subintervals in P.

The Riemann sum of f on [a, b] for a partition P is $R_P = \sum_{n=1}^{n}$ $k=1$ $f(w_k)\Delta x$, where w_k is some point in the kth subinterval of the partition P.

If $\lim_{\|P\|\to 0}$ $\sum_{n=1}^{\infty}$ $k=1$ $f(w_k)\Delta x = L$ for some real number L, then we say that f is integrable on [a, b], and the definite integral of f on $[a, b]$ is:

$$
\int_{a}^{b} f(x)dx = \lim_{\|P\| \to 0} \sum_{k=1}^{n} f(w_k) \Delta x = L
$$

The Fundamental Theorem of Calculus:

Let f be a continuous function on the interval $[a, b]$:

(a) If G is the function defined by \int^x a $f(t)$ dt for every x in [a, b], then G is an antiderivative of f on [a, b]. (b) If F is any antiderivative of f on $[a, b]$, then:

E. Properties of Definite Integrals

1.
$$
\int_{a}^{b} c \, dx = c(b - a)
$$

\n2.
$$
\int_{a}^{a} f(x) \, dx = 0
$$

\n3.
$$
\int_{a}^{b} f(x) \, dx = -\int_{b}^{a} f(x) \, dx
$$

\n4.
$$
\int_{a}^{b} cf(x) \, dx = c \int_{a}^{b} f(x) \, dx
$$
, for any constant c
\n5.
$$
\int_{a}^{b} f(x) \pm g(x) \, dx = \int_{a}^{b} f(x) \, dx \pm \int_{a}^{b} g(x) \, dx
$$

\n6.
$$
\int_{a}^{b} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{c}^{b} f(x) \, dx
$$

\nIf f is integrable on $[a, b]$ and $f(x) \ge 0$ for every x in $[a, b]$, then
$$
\int_{a}^{b} f(x) \, dx \ge 0
$$

\nIf f and g are integrable on $[a, b]$ and $f(x) \ge g(x)$ for every x in $[a, b]$, then
$$
\int_{a}^{b} f(x) \, dx \ge \int_{a}^{b} g(x) \, dx
$$

a a $g(x) dx$ The Mean Value Theorem for Definite Integrals:

If f is continuous on [a, b], then there is a number z in the open interval (a, b) such that \int^b a $f(x) dx = f(z)(b-a)$

F. The Average Value of a Function

Let f be a function that is integrable on an interval $[a, b]$. Then the **average value** of f over $[a, b]$ is 1 $b - a$ \int^b a $f(x) dx$.