1. Evaluate each of the following integrals. (Continued on the next page.)

(a)
$$\int \frac{x^3}{(1+x^2)^2} dx$$

(d)
$$\int \frac{\cos(x)}{2 - \sin(x)} dx$$

(b)
$$\int \frac{x}{x^2 - 16} \, dx$$

(e)
$$\int \frac{1}{\sqrt{9-x^2}} \, dx$$

$$(c) \int_0^{\frac{\pi}{3}} \cos^3(x) \, dx$$

(f)
$$\int_{-\frac{\pi}{4}}^{-\frac{\pi}{6}} \cot^2(x) \csc^2(x) dx$$

(g)
$$\int \cos(4x)\sin(9x) \ dx$$

(j)
$$\int \sqrt{1+x^2} \, dx$$

(h)
$$\int \tan^3(x) \sec(x) dx$$

$$\text{(k)} \int \frac{4x}{\left(4 - x^2\right)^2} \, dx$$

(i)
$$\int \sin^7(x) \cos^5(x) \ dx$$

$$(1) \int \frac{5}{x^3 \sqrt{x^2 - 4}} \, dx$$

2. Do #32 in section 9.2 (page 467).

3. Find the centroid of the region in the first quadrant that is bounded by the graphs of $y = \frac{x}{\sqrt{25 - x^2}}$, x = 0, and x = 4.