Exam 4 - Practice Problems

- 1. For each of the following sequences, determine whether the sequence converges or diverges. If a sequence converges, whenever possible, find the value of the limit of the sequence.
 - (a) $\left\{\frac{n+2}{3n-1}\right\}$
 - (b) $\left\{ (-1)^n \frac{n+2}{3n-1} \right\}$
 - (c) $\{ne^{-n}\}$
 - (d) $\left\{\frac{\cos n}{e^n}\right\}$
 - (e) $\{\sqrt[n]{n}\}$
 - (f) $\left\{\frac{n2^n}{3^n}\right\}$
 - (g) $\left\{ \left(1 + \frac{2}{n}\right)^{2n} \right\}$
- 2. Suppose $a_1 = 1$ and $a_{n+1} = \frac{1}{2} \left(a_n + \frac{4}{a_n} \right)$
 - (a) Compute a_5
 - (b) Find $\lim_{n\to\infty} a_n$ [Hint: Let $L = \lim_{n\to\infty} a_{n+1} = \lim_{n\to\infty} a_n$. Then $L = \frac{1}{2}\left(L + \frac{4}{L}\right)$]
- 3. Determine whether the following series converge or diverge. For those that converge, find the sum of the series.
 - (a) $\sum_{n=1}^{\infty} \frac{1}{2} \left(-\frac{1}{3} \right)^n$
 - (b) $\sum_{n=1}^{\infty} 4 \left(\frac{1}{2}\right)^n$
 - (c) $\sum_{n=1}^{\infty} \frac{4n}{n+2}$
 - (d) $\sum_{n=1}^{\infty} \frac{9}{n(n+3)}$
 - (e) $\sum_{n=1}^{\infty} \frac{4}{n(n+2)}$
 - (f) $\sum_{n=1}^{\infty} (-1)^n \frac{4}{3^n}$
- 4. Use geometric series to express each of the following repeating decimals in fractional form.
 - (a) $.11\overline{1}$
 - (b) $.7878\overline{78}$
 - (c) $.137137\overline{137}$
 - (d) $.99\overline{9}$

- 5. For each of the following series, if the series is positive term, determine whether it is convergent or divergent; if the series contains negative terms, determine whether it is absolutely convergent, conditionally convergent, or divergent.
 - (a) $\sum_{n=2}^{\infty} \frac{4}{n \left(\ln n\right)^3}$
 - (b) $\sum_{n=1}^{\infty} \frac{\sqrt{1+n^{-1}}}{n^2}$
 - (c) $\sum_{n=1}^{\infty} \frac{\sin n 2}{n^2}$
 - (d) $\sum_{n=1}^{\infty} \frac{n^4 + 2n 1}{n^5 + 3n^2 20}$
 - (e) $\sum_{n=1}^{\infty} \frac{e^{\frac{1}{n}+1}}{n^3}$
 - (f) $\sum_{n=1}^{\infty} (-1)^n \frac{4}{n+1}$
 - (g) $\sum_{n=1}^{\infty} \left(\frac{4n}{5n+1} \right)^n$
 - (h) $\sum_{n=1}^{\infty} \frac{2 \cdot n}{3^n}$
 - (i) $\sum_{n=1}^{\infty} (-1)^n \frac{4^n}{(2n+1)!}$
 - $(j) \sum_{n=1}^{\infty} n^3 e^{-n}$
 - (k) $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$
 - $(1) \sum_{n=1}^{\infty} \frac{4^n}{(n!)^2}$
 - (m) $\sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt[n]{n}}$
- 6. Estimate the sum of the series $\sum_{n=1}^{\infty} (-1)^n \frac{n}{n^4+1}$ to within 0.01
- 7. Determine the number of terms necessary to estimate the sum of the following series to within 1×10^{-6}
 - (a) $\sum_{n=1}^{\infty} (-1)^n \frac{3}{n^2}$
 - (b) $\sum_{n=1}^{\infty} (-1)^n \frac{2^n}{n!}$
- 8. Find all real values of x for which the series $\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{n \cdot 4^n}$ converges.