Math 262 Exam 4 - Practice Problem Solutions

- 1. For each of the following sequences, determine whether the sequence converges or diverges. If a sequence converges, whenever possible, find the value of the limit of the sequence.
	- (a) $\left\{\frac{n+2}{2}\right\}$ $3n-1$ \mathcal{L}

Notice that
$$
\lim_{x \to \infty} \frac{x+2}{3x-1} = \frac{1}{3}
$$
. Therefore, this sequence converges to $\frac{1}{3}$.
(b) $\left\{ (-1)^n \frac{n+2}{3n-1} \right\}$

Notice that if we consider the absolute value of this sequence: $\lim_{x \to \infty} \frac{x+2}{3x-1}$ $\frac{x+2}{3x-1} = \frac{1}{3}$ $\frac{1}{3}$.

From this, we see that the subsequence of even terms of this sequence converges to $\frac{1}{3}$ while the subsequence of odd terms converges to $-\frac{1}{3}$. Hence this sequence diverges.

$$
(c) \ \{ne^{-n}\}
$$

Notice that $\lim_{x \to \infty} xe^{-x} = \lim_{x \to \infty} \frac{x}{e^x}$ $\frac{x}{e^x} = \lim_{x \to \infty} \frac{1}{e^x}$ $\frac{1}{e^x} = 0.$ Therefore, this sequence converges

$$
(\mathrm{d}) \ \left\{ \frac{\cos n}{e^n} \right\}
$$

Notice that $\frac{-1}{e^n} \leq$ e^n = e^n = e cos n $\frac{1}{n}$ \leq 1 \overline{n} Also, $\lim_{x \to \infty} \frac{-1}{e^n}$ $\frac{-1}{e^n} = 0$ and $\lim_{x \to \infty} \frac{1}{e^n}$ $\frac{1}{e^n}=0,$ so by the sandwich theorem for sequences, $\lim_{x\to\infty}\frac{\cos n}{e^n}$ $\frac{e^{n}}{e^{n}}=0$

(e) $\{\sqrt[n]{n}\}$

Consider the limit of the related function: $\lim_{x \to \infty} \sqrt[x]{x} = \lim_{x \to \infty} x^{\frac{1}{x}}$.

Taking the natural logarithm of this gives: $\lim_{x \to \infty} \frac{1}{x}$ $\frac{1}{x} \ln x = \lim_{x \to \infty} \frac{\ln x}{x}$ $\frac{d}{dx}$ which, by L'Hôpital's Rule: 1

 $= 1$

$$
= \lim_{x \to \infty} \frac{\frac{1}{x}}{1} = \lim_{x \to \infty} \frac{1}{x} = 0.
$$

Then
$$
\lim_{x \to \infty} x^{\frac{1}{x}} = e^0 = 1.
$$
 Hence
$$
\lim_{n \to \infty} \sqrt[n]{n}
$$

$$
(f) \ \left\{ \frac{n2^n}{3^n} \right\}
$$

First, notice that $a_{n+1} = \frac{(n+1)2^{n+1}}{2n+1}$ $\frac{(n+1)2^{n+1}}{3^{n+1}} = (n+1)\frac{2}{3}.$ $\sqrt{2}$ 3 $\bigg)^n$. Also, when $n > 2$, $2n + 2 < 3n$, so $\frac{2n + 2}{2}$ $\frac{+2}{3}$ < n or $0 < (n+1)\frac{2}{3} < n$. Hence for $n > 2$, $a_n > a_{n+1} \ge 0$. But this means that this sequence is both monotone and bounded. Hence this sequence converges.

(g)
$$
\left\{ \left(1 + \frac{2}{n}\right)^{2n} \right\}
$$

Again making use of logarithms and L'Hôpital's Rule:

$$
\lim_{x \to \infty} 2x \ln \left(1 + \frac{2}{x} \right) = 2 \lim_{x \to \infty} \frac{\ln \left(1 + \frac{2}{x} \right)}{\frac{1}{x}} = 2 \lim_{x \to \infty} \frac{\frac{1}{1 + \frac{2}{x}} \cdot \left(-2x^{-2} \right)}{-x^{-2}}
$$
\n
$$
= 4 \lim_{x \to \infty} \frac{1}{1 + \frac{2}{x}} = 4
$$
\nHence

\n
$$
\lim_{n \to \infty} \left(1 + \frac{2}{n} \right)^{2n} = e^4
$$

2. Suppose $a_1 = 1$ and $a_{n+1} = \frac{1}{2}$ 2 $\left(a_n + \frac{4}{\cdots}\right)$ a_n \setminus

(a) Compute a_5 $a_1 = 1; a_2 = \frac{1}{2} \left(1 + \frac{4}{1} \right) = \frac{5}{2}; a_3 = \frac{1}{2} \left(\frac{5}{2} + \frac{4 \cdot 2}{5} \right) = \frac{1}{2} \left(\frac{5}{2} + \frac{8}{5} \right) = \frac{41}{20}$ $a_4 = \frac{1}{2} \left(\frac{41}{20} + \frac{4 \cdot 20}{41} \right) = \frac{1}{2} \left(\frac{41^2 + 4 \cdot 20^2}{41 \cdot 20} \right) = \frac{3281}{1640}$ $a_5 = \frac{1}{2} \left(\frac{3281}{1640} + \frac{4 \cdot 1640}{3281} \right) = \frac{1}{2} \left(\frac{3281^2 + 4 \cdot 1640^2}{1640 \cdot 3281} \right) = \frac{21523361}{10761680}$ (b) Find $\lim_{n \to \infty} a_n$ [Hint: Let $L = \lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} a_n$. Then $L = \frac{1}{2}$ 2 $\left(L+\frac{4}{7}\right)$ L $\big)$] Solving $L=\frac{1}{2}$ 2 $\left(L+\frac{4}{\tau}\right)$ L $\Big)$ for L: $2L = \frac{L^2 + 4}{L}$

 $\frac{+4}{L}$, so $2L^2 = L^2 + 4$. Thus $L^2 = 4$, hence $L = \pm 2$. Since a_1 is positive, and whenever a_n is positive, so is a_{n+1} , we can reject the negative solution and conclude that $L = 2$.

3. Determine whether the following series converge or diverge. For those that converge, find the sum of the series.

(a)
$$
\sum_{n=1}^{\infty} \frac{1}{2} \left(-\frac{1}{3} \right)^n
$$

This is a geometric series with $a = -\frac{1}{6}$ and $r = -\frac{1}{3}$. Clearly, $|r| < 1$. Therefore, $S = \frac{a}{1 - a}$ $\frac{a}{1-r} = \frac{-\frac{1}{6}}{1-(-\frac{1}{c})}$ $\frac{-\frac{1}{6}}{1 - \left(-\frac{1}{3}\right)} = \frac{-\frac{1}{6}}{\frac{4}{3}}$ = − 1 $\overline{6}$. 3 $\frac{3}{4} = -\frac{1}{8}$ $\frac{1}{8}$. (b) \sum_{1}^{∞} $n=1$ $4\left(\frac{1}{2}\right)$ 2 \setminus^n

This is a geometric series with $a = 2$ and $r = \frac{1}{2}$. Clearly, $|r| < 1$. Therefore, $S = \frac{a}{1 - \frac{1}{2}}$ $\frac{a}{1-r} = \frac{2}{1-r}$ $\frac{2}{1 - (\frac{1}{2})} = \frac{2}{\frac{1}{2}}$ $\frac{1}{2}$ $= 4.$

$$
(c) \sum_{n=1}^{\infty} \frac{4n}{n+2}
$$

Notice that $\lim_{n\to\infty}\frac{4n}{n+1}$ $\frac{4n}{n+2} = \lim_{n \to \infty} \frac{4}{1}$ $\frac{1}{1}$ = 4. Therefore, this series diverges by the *n*th term test.

(d)
$$
\sum_{n=1}^{\infty} \frac{9}{n(n+3)}
$$

Using partial fractions, we can rewrite $\frac{9}{n(n+3)} = \frac{A}{n}$ $\frac{A}{n} + \frac{B}{n+}$ $\frac{B}{n+3}$, where $A(n+3) + Bn = 9$. Setting $n = 0$ gives $3A = 9$ or $A = 3$. Setting $n = -3$ gives $-3B = 9$ or $B = -3$. Then we have $\frac{9}{n(n+3)} = \frac{3}{n}$ $\frac{-}{n}$ – 3 $\frac{3}{n+3} = 3\left(\frac{1}{n}\right)$ $\frac{-}{n}$ $\left(\frac{1}{n+3}\right)$ Therefore, this is a telescoping series of the form: $3\left(1-\frac{1}{4}\right)$ $\frac{1}{4} + \frac{1}{2}$ $\frac{1}{2}$ – 1 $\frac{1}{5} + \frac{1}{3}$ $\frac{1}{3}$ – 1 $\left(\frac{1}{6}...\right)$ Hence for $n \geq 3$, $S_n = 3\left(1 + \frac{1}{2}\right)$ $\frac{1}{2} + \frac{1}{3}$ $\frac{1}{3}$ 1 $\frac{n+1}{-}$ 1 $\frac{1}{n+2}$ $\left(\frac{1}{n+3}\right)$ Thus $\lim_{n \to \infty} S_n = 3 \left(1 + \frac{1}{2} \right)$ $\frac{1}{2} + \frac{1}{3}$ 3 $= \frac{11}{2}$ 2 (e) \sum_{0}^{∞} $\frac{n=1}{n}$ 4 $n(n+2)$ Using partial fractions, we can rewrite $\frac{4}{n(n+2)} = \frac{A}{n}$ $\frac{A}{n} + \frac{B}{n+}$ $\frac{B}{n+2}$, where $A(n+2) + Bn = 4$.

Setting $n = 0$ gives $2A = 4$ or $A = 2$. Setting $n = -2$ gives $-2B = 4$ or $B = -2$.

Then we have $\frac{4}{n(n+2)} = \frac{2}{n}$ $\frac{-}{n}$ 2 $\frac{2}{n+2} = 2\left(\frac{1}{n}\right)$ $\frac{-}{n}$ $\left(\frac{1}{n+2}\right)$ Therefore, this is a telescoping series of the form: $2\left(1-\frac{1}{3}\right)$ $\frac{1}{3} + \frac{1}{2}$ $\frac{1}{2}$ – 1 $\frac{1}{4} + \frac{1}{3}$ $\frac{1}{3}$ 1 $\left(\frac{1}{5}...\right)$ Hence for $n \geq 3$, $S_n = 2\left(1 + \frac{1}{2}\right)$ $\frac{1}{2}$ – 1 $\frac{n+1}{n+1}$ $\frac{1}{n+2}$ Thus $\lim_{n \to \infty} S_n = 2 \left(1 + \frac{1}{2} \right)$ 2 $= 3$ (f) \sum_{0}^{∞} $\sum_{n=1}^{\infty} (-1)^n \frac{4}{3^n}$ Notice that $\sum_{n=1}^{\infty}$ $\sum_{n=1}^{\infty} (-1)^n \frac{4}{3^n} \sum_{n=1}^{\infty}$ $n=1$ $\frac{4}{9}$ $\left(\frac{-1}{2} \right)$ 3 \setminus^n This is a geometric series with $a = -\frac{4}{3}$ and $r = -\frac{1}{3}$. Clearly, $|r| < 1$. Therefore, $S = \frac{a}{1 - a}$ $\frac{a}{1-r} = \frac{-\frac{4}{3}}{1-(-\frac{4}{3})}$ $\frac{-\frac{4}{3}}{1 - \left(-\frac{1}{3}\right)} = \frac{-\frac{4}{3}}{\frac{4}{3}}$ =

−1.

4. Use geometric series to express each of the following repeating decimals in fractional form.

(a) $.11\overline{1}$

Notice that this repeating decimal can be written as the series: $\sum_{n=1}^{\infty}$ $n=1$ $\left(\frac{1}{10}\right)^n$

This is a geometric series with $a = \frac{1}{10}$ and $r = \frac{1}{10}$. Clearly, $|r| < 1$. Therefore, $S = \frac{a}{10}$ $\frac{a}{1-r} =$ $\frac{1}{10}$ $\frac{10}{1 - (\frac{1}{10})}$ = $\frac{1}{10}$
 $\frac{9}{10}$ $=\frac{1}{2}$ $\frac{1}{9}$.

(b) $.7878\overline{78}$

Notice that this repeating decimal can be written as the series: $\sum_{n=1}^{\infty}$ $n=1$ $78\left(\frac{1}{100}\right)^n$

This is a geometric series with $a = \frac{78}{100}$ and $r = \frac{1}{100}$. Clearly, $|r| < 1$. Therefore, $S = \frac{a}{100}$ $\frac{a}{1-r} =$ 78 100 $\frac{100}{1 - (\frac{1}{100})}$ = $\frac{78}{100}$
 $\frac{99}{100}$ = 78 $\frac{1}{99}$.

 (c) .137137137

Notice that this repeating decimal can be written as the series: $\sum_{n=1}^{\infty}$ $n=1$ $137\left(\frac{1}{1000}\right)^n$

This is a geometric series with $a = \frac{137}{1000}$ and $r = \frac{1}{1000}$. Clearly, $|r| < 1$. Therefore, $S = \frac{a}{1 - \frac{1}{1000}}$ $\frac{a}{1-r} =$ 137 100 $\frac{100}{1 - (\frac{1}{1000})}$ = $\frac{137}{1000}$ $\frac{999}{1000}$ $=\frac{137}{000}$ 999 .

(d) $.99\overline{9}$

Notice that this repeating decimal can be written as the series: $\sum_{n=1}^{\infty}$ $n=1$ $9\left(\frac{1}{10}\right)^n$

This is a geometric series with $a = \frac{9}{10}$ and $r = \frac{1}{10}$. Clearly, $|r| < 1$. Therefore, $S = \frac{a}{10}$ $\frac{a}{1-r} =$ $\frac{9}{10}$ $\frac{10}{1 - (\frac{1}{10})}$ = $\frac{9}{10}$
 $\frac{9}{10}$ $= 1$. 5. For each of the following series, if the series is positive term, determine whether it is convergent or divergent; if the series contains negative terms, determine whether it is absolutely convergent, conditionally convergent, or divergent.

(a)
$$
\sum_{n=2}^{\infty} \frac{4}{n(\ln n)^3}
$$

\nNotice that $f(x) = \frac{4}{x(\ln x)^3}$ is continuous and decreasing for $x \ge 2$.
\nConsider
$$
\int_{2}^{\infty} \frac{4}{x(\ln x)^3} dx
$$
. If we let $u = \ln x$, then $du = \frac{1}{2} dx$. Then, rewriting this as an improper integral:
\n
$$
\lim_{n \to \infty} \int_{\ln 2}^{\ln d} \frac{4u^{-3} du}{u^2} du = \lim_{n \to \infty} -2u^{-2} \Big|_{\ln 2}^{\ln d} = \lim_{n \to \infty} -\frac{2}{(\ln 1)^2} + \frac{2}{(\ln 2)^2}
$$
\nwhich converges. Therefore, the series
$$
\sum_{n=2}^{\infty} \frac{4}{n(\ln n)^3}
$$
 converges by the integral test.
\n(b)
$$
\sum_{n=1}^{\infty} \frac{\sqrt{1 + n^{-1}}}{n^2}
$$

\nSince $\frac{1}{n} \le 1$ for $n \ge 1$, $\frac{\sqrt{1 + n^{-1}}}{n^2} = \frac{\sqrt{1 + \frac{1}{n}}}{n^2} \le \frac{\sqrt{2}}{n^2}$. Also, $\sum_{n=1}^{\infty} \frac{\sqrt{2}}{n^2}$ is a convergent *p*-series. Thus the series
$$
\sum_{n=1}^{\infty} \frac{\sqrt{1 + n^{-1}}}{n^2}
$$

\nNotice that $\left| \frac{\sin n - 2}{n^2} \right| \le \frac{3}{n^2}$. Since $\sum_{n=1}^{\infty} \frac{3}{n^2}$ is a convergent *p*-series, the series $\sum_{n=1}^{\infty} \frac{\sin n - 2}{n^2}$ converges by comparison.
\n(d)
$$
\sum_{n=1}^{\infty} \frac{n^4 + 2n - 1}{n^2} = \frac{3}{n^2}
$$
. Since $\sum_{n=1}^{\infty} \frac{3}{n^2}$ is a convergent *p*-series, the series $\sum_{n=1}^{\infty} \frac{\sin n - 2}{n^2}$ converges by comparison.
\n(d) $$

Next, notice that $\lim_{n\to\infty}\frac{4}{n+1}$ $\frac{4}{n+1} = 0$, and $\frac{4}{n+1} \ge$ 4 $\frac{4}{n+2}$. Thus by the Alternating Series test, $\sum_{n=1}^{\infty}$ $\sum_{n=1}^{\infty} (-1)^n \frac{4}{n+1}$ is conditionally convergent.

(g)
$$
\sum_{n=1}^{\infty} \left(\frac{4n}{5n+1}\right)^n
$$

\nUsing the Root Test, notice that $\sqrt[n]{\left(\frac{4n}{5n+1}\right)^n} = \frac{4n}{5n+1}$. Moreover, $\lim_{n \to \infty} \frac{4n}{5n+1} = \frac{4}{5} < 1$
\nHence, $\sum_{n=1}^{\infty} \left(\frac{4n}{5n+1}\right)^n$ converges by the Root Test.
\n(h) $\sum_{n=1}^{\infty} \frac{2 \cdot n}{3^n}$
\nUsing the Ratio Test, $a_{n+1} = \frac{2(n+1)}{3^n}$.
\n $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \frac{2(n+1)}{3^{n+1}} \cdot \frac{3^n}{2n} = \frac{n+1}{3n}$.
\nTherefore, $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{n+1}{3n} = \frac{1}{3} < 1$. Hence $\sum_{n=1}^{\infty} \frac{2 \cdot n}{3^n}$ converges by the Ratio Test.
\n(i) $\sum_{n=1}^{\infty} (-1)^n \frac{4^n}{(2n+1)!}$
\nWe first check for absolute convergence by applying the ratio test to $\sum_{n=1}^{\infty} \frac{4^n}{(2n+1)!}$.
\nNotice that $a_{n+1} = \frac{4^{n+1}}{(2(n+1)+1)!} = \frac{4^{n+1}}{(2n+3)!}$.
\nTherefore, $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \frac{4^{n+1}}{(2n+3)!} = \frac{4}{(2n+3)(2n+2)} = 0 < 1$. Hence $\sum_{n=1}^{\infty} \frac{4^n}{(2n+1)!}$ converges by the Ratio Test.
\nThus $\sum_{n=1}^{\infty} (-1)^n \frac{4^n}{(2n+1)!}$ converges absolutely.
\n(i) $\sum_{n=1}^{\infty} n^2 e^{-n}$
\nUsing the Ratio Test, $a_n = \frac{n^3}{e^n}$ and $a_{n+1} = \frac{(n+1)^3}{e^{n+1}} =$

Hence, by the Alternating Series Test, this series converges conditionally.

(1)
$$
\sum_{n=1}^{\infty} \frac{4^n}{(n!)^2}
$$

Using the Ratio Test, $a_{n+1} = \frac{4^{n+1}}{(n+1)!}$ $\frac{4^{n+1}}{((n+1)!)^2} = \frac{4^{n+1}}{(n+1)!(n+1)!}$ $\frac{1}{(n+1)!(n+1)!}$. Then $\frac{a_{n+1}}{a_n} = \frac{4^{n+1}}{(n+1)!(n+1)!}$ $\frac{(n+1)!(n+1)!}{(n+1)!}$ $n!n!$ $\frac{n!n!}{4^n} = \frac{4}{(n+1)}$ $\frac{1}{(n+1)^2}$ Therefore, $\lim_{n \to \infty} \frac{a_{n+1}}{a_n}$ $\frac{n+1}{a_n} = \lim_{n \to \infty} \frac{4}{(n+1)}$ $\frac{4}{(n+1)^2} = 0$ < 1. Hence $\sum_{n=1}^{\infty}$ $n=1$ 4^n $\frac{1}{(n!)^2}$ converges by the Ratio Test. $(m) \sum_{n=1}^{\infty}$ $\sum_{n=1}^{\infty}$ $(-1)^n \frac{1}{\sqrt[n]{n}}$ Recall that we can compute $\lim_{x \to \infty} \sqrt[n]{n}$ as follows: Consider the limit of the related function: $\lim_{x \to \infty} \sqrt[x]{x} = \lim_{x \to \infty} x^{\frac{1}{x}}$. Taking the natural logarithm of this gives: $\lim_{x \to \infty} \frac{1}{x}$ $\frac{1}{x} \ln x = \lim_{x \to \infty} \frac{\ln x}{x}$ $\frac{1}{x}$ which, by L'Hôpital's Rule: $=\lim_{x\to\infty}$ $\frac{1}{x}$ $rac{\frac{1}{x}}{1} = \lim_{x \to \infty} \frac{1}{x}$ $\frac{1}{x} = 0.$ Then $\lim_{x \to \infty} x^{\frac{1}{x}} = e^0 = 1$. Hence $\lim_{n \to \infty} \sqrt[n]{n} = 1$ But then $\lim_{n \to \infty} \frac{1}{\sqrt[n]{n}}$ $\frac{1}{\sqrt[n]{n}} = 1$, and hence $\lim_{n \to \infty} (-1)^n \frac{1}{\sqrt[n]{n}}$ does not exist. Thus, be this series diverges by the *n*th term test. 6. Estimate the sum of the series $\sum_{n=1}^{\infty}$ $\sum_{n=1}^{\infty} (-1)^n \frac{n}{n^4 + 1}$ to within 0.01

First notice that if $f(x) = \frac{x}{x^4 + 1}$, then $f'(x) = \frac{(x^4 + 1) - x(4x^3)}{(x^4 + 1)^2}$ $\frac{(x^4+1)-x(4x^3)}{(x^4+1)^2} = \frac{-3x^4+1}{(x^4+1)^2}$ $\frac{3x+1}{(x^4+1)^2}$ < 0 whenever $x \ge 1$.

Next, $\lim_{n \to \infty} \frac{n}{n^4 +}$ $\frac{n}{n^4+1} = 0$. Then, by the Error Estimation Theorem for Alternating Series, we need to find n such that $a_{n+1} < 0.01$

Since I really don't feel like solving a 4th degree polynomial equation that does not factor, we'll find n by brute force. Notice that $a_4 = \frac{4}{4^4+1} = \frac{4}{257} \approx 0.015564$ while $a_5 = \frac{5}{5^4+1} \approx 0.007987$

Therefore, we can apporximate S to within 0.01 by adding the first 4 terms of this series: $S_4 = -\frac{1}{2} + \frac{2}{17} - \frac{3}{82} + \frac{4}{257} \approx -0.40$

- 7. Determine the number of terms necessary to estimate the sum of the following series to within 1×10^{-6}
	- (a) \sum_{0}^{∞} $\sum_{n=1}^{\infty} (-1)^n \frac{3}{n^2}$

Notice that this series is decreasing and its terms tend to 0 as $n \to \infty$

If $\frac{3}{n^2} < 10^{-6}$, then $\frac{3}{10^{-6}} < n^2$, so $n^2 > \sqrt{\frac{3}{10^{-6}}}$ $\frac{3}{10^{-6}} = \sqrt{3000000} \approx 1732.05$, so we can estimate S to within 10^{-6} by computing S_n with $n = 1732$.

(b)
$$
\sum_{n=1}^{\infty} (-1)^n \frac{2^n}{n!}
$$

Notice that this series is decreasing and its terms tend to 0 as $n \to \infty$ Since the algebra is quite challenging, we will find n by brute force:

Notice that
$$
a_{10} = \frac{2^{10}}{10!} \approx .000282
$$
; $a_{12} = \frac{2^{12}}{12!} \approx .000008551$
\n $a_{13} = \frac{2^{13}}{13!} \approx .000001316$; $a_{14} = \frac{2^{14}}{14!} \approx .000000188$
\nSo we can estimate *S* to within 10^{-6} by computing S_n with $n = 13$.

8. Find all real values of x for which the series \sum^{∞} $\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{n \cdot 4}$ $\frac{1}{n \cdot 4^n}$ converges.

We first use the ratio test on the positive part of this series:

Notice that
$$
a_{n+1} = \frac{x^{n+1}}{(n+1)4^{n+1}} = \frac{4^{n+1}}{(n+1)!(n+1)!}
$$
.
Then
$$
\frac{a_{n+1}}{a_n} = \frac{x^{n+1}}{(n+1)4^{n+1}} \cdot \frac{n4^n}{x^n} = \frac{nx}{4(n+1)}
$$
.

Therefore, $\lim_{n \to \infty} \frac{a_{n+1}}{a_n}$ $\frac{n+1}{a_n} = \lim_{n \to \infty} \frac{x}{4}$ $\frac{1}{4}$. n $\frac{n}{n+1} = \frac{x}{4}$ $\frac{x}{4}$. Hence, by the Ratio Test, $\sum_{n=1}^{\infty}$ $\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{n \cdot 4}$ $\frac{a}{n \cdot 4^n}$ converges absolutely when $x < 4$ and diverges when $x > 4$

This test is inconclusive when $|x| = 4$.

When $x = 4$, we have $\sum_{n=1}^{\infty}$ $\sum_{n=1}^{\infty} (-1)^n \frac{4^n}{n \cdot 4}$ $\frac{4^n}{n\cdot 4^n}=\sum_{n=1}^\infty$ $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$, which converges conditionally by the alternating series test (the positive part of this series is clearly decreasing and the terms tend to zero).

When $x = -4$, we have $\sum_{n=1}^{\infty} (-1)^n \frac{(-4)^n}{n \cdot 4^n} = \sum_{n=1}^{\infty}$ $\sum_{n=1}^{\infty} (-1)^{2n} \frac{1}{n} = \sum_{n=1}^{\infty}$ $n=1$ 1 $\frac{1}{n}$, which diverges.

Therefore, this series converges for all x-values in the interval $(-4.4]$.