Math 262 Exam 4 - Practice Problem Solutions

- 1. For each of the following sequences, determine whether the sequence converges or diverges. If a sequence converges, whenever possible, find the value of the limit of the sequence.
 - (a) $\left\{\frac{n+2}{3n-1}\right\}$

Notice that $\lim_{x\to\infty} \frac{x+2}{3x-1} = \frac{1}{3}$. Therefore, this sequence converges to $\frac{1}{3}$. (b) $\left\{ (-1)^n \frac{n+2}{3n-1} \right\}$

Notice that if we consider the absolute value of this sequence: $\lim_{x \to \infty} \frac{x+2}{3x-1} = \frac{1}{3}$

From this, we see that the subsequence of even terms of this sequence converges to $\frac{1}{3}$ while the subsequence of odd terms converges to $-\frac{1}{3}$. Hence this sequence diverges.

(c)
$$\{ne^{-n}\}$$

Notice that $\lim_{x\to\infty} xe^{-x} = \lim_{x\to\infty} \frac{x}{e^x} = \lim_{x\to\infty} \frac{1}{e^x} = 0.$ Therefore, this sequence converges to 0.

(d) $\left\{\frac{\cos n}{e^n}\right\}$

Notice that $\frac{-1}{e^n} \le \frac{\cos n}{e^n} \le \frac{1}{e^n}$ Also, $\lim_{x \to \infty} \frac{-1}{e^n} = 0$ and $\lim_{x \to \infty} \frac{1}{e^n} = 0$, so by the sandwich theorem for sequences, $\lim_{x \to \infty} \frac{\cos n}{e^n} = 0$

(e) $\left\{\sqrt[n]{n}\right\}$

Consider the limit of the related function: $\lim_{x \to \infty} \sqrt[x]{x} = \lim_{x \to \infty} x^{\frac{1}{x}}$. Taking the natural logarithm of this gives: $\lim_{x \to \infty} \frac{1}{x} \ln x = \lim_{x \to \infty} \frac{\ln x}{x}$ which, by L'Hôpital's Rule: $= \lim_{x \to \infty} \frac{1}{x} = \lim_{x \to \infty} \frac{1}{x} = 0.$ Then $\lim_{x \to \infty} x^{\frac{1}{x}} = e^0 = 1$. Hence $\lim_{n \to \infty} \sqrt[n]{n} = 1$

(f)
$$\left\{\frac{n2^n}{3^n}\right\}$$

First, notice that $a_{n+1} = \frac{(n+1)2^{n+1}}{3^{n+1}} = (n+1)\frac{2}{3} \cdot \left(\frac{2}{3}\right)^n$. Also, when n > 2, 2n + 2 < 3n, so $\frac{2n+2}{3} < n$ or $0 < (n+1)\frac{2}{3} < n$. Hence for n > 2, $a_n > a_{n+1} \ge 0$. But this means that this sequence is both monotone and bounded. Hence this sequence converges.

(g)
$$\left\{ \left(1+\frac{2}{n}\right)^{2n} \right\}$$

Again making use of logarithms and L'Hôpital's Rule:

$$\lim_{x \to \infty} 2x \ln\left(1 + \frac{2}{x}\right) = 2 \lim_{x \to \infty} \frac{\ln\left(1 + \frac{2}{x}\right)}{\frac{1}{x}} = 2 \lim_{x \to \infty} \frac{\frac{1}{1 + \frac{2}{x}} \cdot \left(-2x^{-2}\right)}{-x^{-2}}$$
$$= 4 \lim_{x \to \infty} \frac{1}{1 + \frac{2}{x}} = 4$$
Hence $\lim_{n \to \infty} \left(1 + \frac{2}{n}\right)^{2n} = e^4$

2. Suppose $a_1 = 1$ and $a_{n+1} = \frac{1}{2} \left(a_n + \frac{4}{a_n} \right)$

(a) Compute a_5 $a_1 = 1; a_2 = \frac{1}{2} \left(1 + \frac{4}{1} \right) = \frac{5}{2}; a_3 = \frac{1}{2} \left(\frac{5}{2} + \frac{4 \cdot 2}{5} \right) = \frac{1}{2} \left(\frac{5}{2} + \frac{8}{5} \right) = \frac{41}{20}$ $a_4 = \frac{1}{2} \left(\frac{41}{20} + \frac{4 \cdot 20}{41} \right) = \frac{1}{2} \left(\frac{41^2 + 4 \cdot 20^2}{41 \cdot 20} \right) = \frac{3281}{1640}$ $a_5 = \frac{1}{2} \left(\frac{3281}{1640} + \frac{4 \cdot 1640}{3281} \right) = \frac{1}{2} \left(\frac{3281^2 + 4 \cdot 1640^2}{1640 \cdot 3281} \right) = \frac{21523361}{10761680}$ (b) Find $\lim_{n \to \infty} a_n$ [Hint: Let $L = \lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} a_n$. Then $L = \frac{1}{2} \left(L + \frac{4}{L} \right)$] Solving $L = \frac{1}{2} \left(L + \frac{4}{L} \right)$ for L: $2L = \frac{L^2 + 4}{L}$, so $2L^2 = L^2 + 4$. Thus $L^2 = 4$, hence $L = \pm 2$.

Since a_1 is positive, and whenever a_n is positive, so is a_{n+1} , we can reject the negative solution and conclude that L = 2.

3. Determine whether the following series converge or diverge. For those that converge, find the sum of the series.

(a)
$$\sum_{n=1}^{\infty} \frac{1}{2} \left(-\frac{1}{3}\right)^n$$

This is a geometric series with $a = -\frac{1}{6}$ and $r = -\frac{1}{3}$. Clearly, |r| < 1. Therefore, $S = \frac{a}{1-r} = \frac{-\frac{1}{6}}{1-(-\frac{1}{3})} = \frac{-\frac{1}{6}}{\frac{4}{3}} = -\frac{1}{6} \cdot \frac{3}{4} = -\frac{1}{8}$. (b) $\sum_{n=1}^{\infty} 4\left(\frac{1}{2}\right)^n$

This is a geometric series with a = 2 and $r = \frac{1}{2}$. Clearly, |r| < 1. Therefore, $S = \frac{a}{1-r} = \frac{2}{1-(\frac{1}{2})} = \frac{2}{\frac{1}{2}} = 4$.

(c)
$$\sum_{n=1}^{\infty} \frac{4n}{n+2}$$

Notice that $\lim_{n \to \infty} \frac{4n}{n+2} = \lim_{n \to \infty} \frac{4}{1} = 4$. Therefore, this series diverges by the *n*th term test.

(d)
$$\sum_{n=1}^{\infty} \frac{9}{n(n+3)}$$

Using partial fractions, we can rewrite $\frac{9}{n(n+3)} = \frac{A}{n} + \frac{B}{n+3}$, where A(n+3) + Bn = 9. Setting n = 0 gives 3A = 9 or A = 3. Setting n = -3 gives -3B = 9 or B = -3. Then we have $\frac{9}{n(n+3)} = \frac{3}{n} - \frac{3}{n+3} = 3\left(\frac{1}{n} - \frac{1}{n+3}\right)$ Therefore, this is a telescoping series of the form: $3\left(1 - \frac{1}{4} + \frac{1}{2} - \frac{1}{5} + \frac{1}{3} - \frac{1}{6}...\right)$ Hence for $n \ge 3$, $S_n = 3\left(1 + \frac{1}{2} + \frac{1}{3} - \frac{1}{n+1} - \frac{1}{n+2} - \frac{1}{n+3}\right)$ Thus $\lim_{n\to\infty} S_n = 3\left(1 + \frac{1}{2} + \frac{1}{3}\right) = \frac{11}{2}$ (e) $\sum_{n=1}^{\infty} \frac{4}{n(n+2)}$ Using partial fractions, we can rewrite $\frac{4}{n(n+2)} = \frac{A}{n} + \frac{B}{n+2}$, where A(n+2) + Bn = 4.

Setting n = 0 gives 2A = 4 or A = 2. Setting n = -2 gives -2B = 4 or B = -2.

Then we have $\frac{4}{n(n+2)} = \frac{2}{n} - \frac{2}{n+2} = 2\left(\frac{1}{n} - \frac{1}{n+2}\right)$ Therefore, this is a telescoping series of the form: $2\left(1 - \frac{1}{3} + \frac{1}{2} - \frac{1}{4} + \frac{1}{3} - \frac{1}{5}...\right)$ Hence for $n \ge 3$, $S_n = 2\left(1 + \frac{1}{2} - \frac{1}{n+1} - \frac{1}{n+2}\right)$ Thus $\lim_{n \to \infty} S_n = 2\left(1 + \frac{1}{2}\right) = 3$ (f) $\sum_{n=1}^{\infty} (-1)^n \frac{4}{3^n}$ Notice that $\sum_{n=1}^{\infty} (-1)^n \frac{4}{3^n} \sum_{n=1}^{\infty} 4\left(\frac{-1}{3}\right)^n$ This is a geometric series with $a = -\frac{4}{3}$ and $r = -\frac{1}{3}$. Clearly, |r| < 1. Therefore, $S = \frac{a}{1-r} = \frac{-\frac{4}{3}}{1-(-\frac{1}{\pi})} = -\frac{4}{3}$

-1.

4. Use geometric series to express each of the following repeating decimals in fractional form.

(a) $.11\overline{1}$

Notice that this repeating decimal can be written as the series: $\sum_{n=1}^{\infty} \left(\frac{1}{10}\right)^n$

This is a geometric series with $a = \frac{1}{10}$ and $r = \frac{1}{10}$. Clearly, |r| < 1. Therefore, $S = \frac{a}{1-r} = \frac{\frac{1}{10}}{1-(\frac{1}{10})} = \frac{\frac{1}{10}}{\frac{9}{10}} = \frac{1}{9}$. (b) .787878

Notice that this repeating decimal can be written as the series: $\sum_{n=1}^{\infty} 78 \left(\frac{1}{100}\right)^n$

This is a geometric series with $a = \frac{78}{100}$ and $r = \frac{1}{100}$. Clearly, |r| < 1. Therefore, $S = \frac{a}{1-r} = \frac{\frac{78}{100}}{1-(\frac{1}{100})} = \frac{\frac{78}{100}}{\frac{99}{100}} = \frac{78}{99}$.

 $(c) \hspace{0.1cm}.137137\overline{137}$

Notice that this repeating decimal can be written as the series: $\sum_{n=1}^{\infty} 137 \left(\frac{1}{1000}\right)^n$

This is a geometric series with $a = \frac{137}{1000}$ and $r = \frac{1}{1000}$. Clearly, |r| < 1. Therefore, $S = \frac{a}{1-r} = \frac{\frac{137}{100}}{1-(\frac{1}{1000})} = \frac{\frac{137}{1000}}{\frac{999}{1000}} = \frac{137}{999}$.

(d) .999

Notice that this repeating decimal can be written as the series: $\sum_{n=1}^{\infty} 9\left(\frac{1}{10}\right)^n$

This is a geometric series with $a = \frac{9}{10}$ and $r = \frac{1}{10}$. Clearly, |r| < 1. Therefore, $S = \frac{a}{1-r} = \frac{\frac{9}{10}}{1-(\frac{1}{10})} = \frac{\frac{9}{10}}{\frac{9}{10}} = 1$.

- 5. For each of the following series, if the series is positive term, determine whether it is convergent or divergent; if the series contains negative terms, determine whether it is absolutely convergent, conditionally convergent, or divergent.
 - (a) $\sum_{n=2}^{\infty} \frac{4}{n (\ln n)^3}$ Notice that $f(x) = \frac{4}{x(\ln x)^3}$ is continuous and decreasing for $x \ge 2$. Consider $\int_{0}^{\infty} \frac{4}{r(\ln r)^3} dx$. If we let $u = \ln x$, then $du = \frac{1}{x} dx$. Then, rewriting this as an improper integral: $\lim_{t \to \infty} \int_{\ln 2}^{\ln t} 4u^{-3} \, du = \lim_{t \to \infty} -2u^{-2} \bigg|_{\ln 2}^{\ln t} = \lim_{t \to \infty} -\frac{2}{(\ln t)^2} + \frac{2}{(\ln 2)^2}$ which converges. Therefore, the series $\sum_{n=2}^{\infty} \frac{4}{n (\ln n)^3}$ converges by the integral test. (b) $\sum_{n=1}^{\infty} \frac{\sqrt{1+n^{-1}}}{n^2}$ Since $\frac{1}{n} \leq 1$ for $n \geq 1$, $\frac{\sqrt{1+n^{-1}}}{n^2} = \frac{\sqrt{1+\frac{1}{n}}}{n^2} \leq \frac{\sqrt{2}}{n^2}$. Also, $\sum_{n=1}^{\infty} \frac{\sqrt{2}}{n^2}$ is a convergent *p*-series. Thus the series $\sum_{n=1}^{\infty} \frac{\sqrt{1+n^{-1}}}{n^2}$ converges by comparison. (c) $\sum_{n=1}^{\infty} \frac{\sin n - 2}{n^2}$ Notice that $\left|\frac{\sin n - 2}{n^2}\right| \le \frac{3}{n^2}$. Since $\sum_{n=1}^{\infty} \frac{3}{n^2}$ is a convergent *p*-series, the series $\sum_{n=1}^{\infty} \frac{\sin n - 2}{n^2}$ converges by comparative converges. (d) $\sum_{n=1}^{\infty} \frac{n^4 + 2n - 1}{n^5 + 3n^2 - 20}$ Using the limit comparison test, let $b_n = \frac{1}{n}$. Then $\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{n^4 + 2n - 1}{n^5 + 3n^2 - 20} \cdot \frac{n}{1} = \lim_{n \to \infty} \frac{n^5 + 2n^2 - n}{n^5 + 3n^2 - 20} = 1.$ Therefore, since $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent, $\sum_{n=1}^{\infty} \frac{n^4 + 2n - 1}{n^5 + 3n^2 - 20}$ diverges by the Limit Comparison Test. (e) $\sum_{n=1}^{\infty} \frac{e^{\left(\frac{1}{n}+1\right)}}{n^3}$ Since $\frac{1}{n} \le 1$ for $n \ge 1$, $e^{\left(\frac{1}{n}+1\right)} \le e^2$ Therefore, $\frac{e^{\left(\frac{1}{n}+1\right)}}{n^3} \le \frac{e^2}{n^3}$ But $\sum_{n=1}^{\infty} \frac{e^2}{n^3} = e^2 \sum_{n=1}^{\infty} \frac{1}{n^3}$, which is a convergent *p*-series. Thus $\sum_{n=1}^{\infty} \frac{e^{\left(\frac{1}{n}+1\right)}}{n^3}$ converges by comparison. (f) $\sum_{n=1}^{\infty} (-1)^n \frac{4}{n+1}$ First notice that $\sum_{n=1}^{\infty} \frac{4}{n+1}$ diverges, since if we let $b_n = \frac{1}{n}$. Then $\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{4}{n+1} \cdot \frac{n}{1} = \lim_{n \to \infty} \frac{4n}{n+1} = 4.$ Therefore, since $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent, $\sum_{n=1}^{\infty} \frac{4}{n+1}$ diverges by the Limit Comparison Test. Hence $\sum_{n=1}^{\infty} (-1)^n \frac{4}{n+1}$ is not absolutely convergent.

Next, notice that $\lim_{n \to \infty} \frac{4}{n+1} = 0$, and $\frac{4}{n+1} \ge \frac{4}{n+2}$. Thus by the Alternating Series test, $\sum_{n=1}^{\infty} (-1)^n \frac{4}{n+1}$ is conditionally convergent.

(g)
$$\sum_{n=1}^{\infty} \left(\frac{4n}{5n+1}\right)^n$$
Using the Root Test, notice that $\sqrt[n]{\left(\frac{4n}{5n+1}\right)^n} = \frac{4n}{5n+1}$. Moreover, $\lim_{n \to \infty} \frac{4n}{5n+1} = \frac{4}{5} < 1$
Hence, $\sum_{n=1}^{\infty} \left(\frac{4n}{5n+1}\right)^n$ converges by the Root Test.
(h) $\sum_{n=1}^{\infty} \frac{2 \cdot n}{3^n}$
Using the Ratio Test, $a_{n+1} = \frac{2(n+1)}{3^{n+1}}$.
Then $\frac{a_{n+1}}{a_n} = \frac{2(n+1)}{3^{n+1}} \cdot \frac{3^n}{2n} = \frac{n}{3n}$.
Therefore, $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{n+1}{3n} = \frac{1}{3} < 1$. Hence $\sum_{n=1}^{\infty} \frac{2 \cdot n}{3^n}$ converges by the Ratio Test.
(i) $\sum_{n=1}^{\infty} (-1)^n \frac{4^n}{(2n+1)!}$
We first check for absolute convergence by applying the ratio test to $\sum_{n=1}^{\infty} (\frac{4^n}{(2n+1)!}$;
Notice that $a_{n+1} = \frac{4^{n+1}}{(2(n+1)+1)!} = \frac{4^{n+1}}{(2n+3)!}$.
Therefore, $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{(2n+1)!}{4^n} = \frac{4}{(2n+3)!(2n+2)}$.
Therefore, $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{(2n+1)!}{(2n+3)!} = 0 < 1$. Hence $\sum_{n=1}^{\infty} \frac{4^n}{(2n+1)!}$ converges by the Ratio Test.
Thus $\sum_{n=1}^{\infty} (-1)^n \frac{4^n}{(2n+1)!}$ converges absolutely.
(j) $\sum_{n=1}^{\infty} n^3 e^{-n}$
Using the Ratio Test, $a_n = \frac{n^3}{e^n}$ and $a_{n+1} = \frac{(n+1)^3}{e^{n+1}} = \frac{n^3 + 3n^2 + 3n + 1}{e^{n+1}}$.
Therefore, $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{n^3 + 3n^2 + 3n + 1}{e^n^3} = \frac{n^2 + 3n^2 + 3n + 1}{2n^3}$.
Therefore, $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{n^3 + 3n^2 + 3n + 1}{e^n^3} = \frac{1}{e} < 1$. Hence $\sum_{n=1}^{\infty} n^3 e^{-n}$ converges by the Ratio Test.
(k) $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$
First notice that $\sum_{n \to \infty} \frac{1}{\sqrt{n}}$ is a divergent *p*-series ($p = \frac{1}{2} \le 1$), so this series does not converge absolutely.
(k) Next, $\lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0$ and $\frac{1}{\sqrt{n+1}} \le \frac{1}{\sqrt{n}}$.

Hence, t he Alternating Series Test, this series converges conditionally.

(1)
$$\sum_{n=1}^{\infty} \frac{4^n}{(n!)^2}$$

Using the Ratio Test, $a_{n+1} = \frac{4^{n+1}}{((n+1)!)^2} = \frac{4^{n+1}}{(n+1)!(n+1)!}$. Then $\frac{a_{n+1}}{a_n} = \frac{4^{n+1}}{(n+1)!(n+1)!} \cdot \frac{n!n!}{4^n} = \frac{4}{(n+1)^2}$. Therefore, $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \lim_{n\to\infty} \frac{4}{(n+1)^2} = 0 < 1$. Hence $\sum_{n=1}^{\infty} \frac{4^n}{(n!)^2}$ converges by the Ratio Test. (m) $\sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt[n]{n}}$ Recall that we can compute $\lim_{x\to\infty} \sqrt[n]{n}$ as follows: Consider the limit of the related function: $\lim_{x\to\infty} \sqrt[n]{x} = \lim_{x\to\infty} x^{\frac{1}{x}}$. Taking the natural logarithm of this gives: $\lim_{x\to\infty} \frac{1}{x} \ln x = \lim_{x\to\infty} \frac{\ln x}{x}$ which, by L'Hôpital's Rule: $= \lim_{x\to\infty} \frac{1}{1} = \lim_{x\to\infty} \frac{1}{x} = 0$. Then $\lim_{x\to\infty} x^{\frac{1}{2}} = e^0 = 1$. Hence $\lim_{n\to\infty} \sqrt[n]{n} = 1$ But then $\lim_{n\to\infty} \frac{1}{\sqrt[n]{n}} = 1$, and hence $\lim_{n\to\infty} (-1)^n \frac{1}{\sqrt[n]{n}}$ does not exist. Thus, be this series diverges by the *n*th term test.

6. Estimate the sum of the series $\sum_{n=1}^{\infty} (-1)^n \frac{n}{n^4 + 1}$ to within 0.01 First notice that if $f(x) = \frac{x}{x^4 + 1}$, then $f'(x) = \frac{(x^4 + 1) - x(4x^3)}{(x^4 + 1)^2} = \frac{-3x^4 + 1}{(x^4 + 1)^2} < 0$ whenever $x \ge 1$.

Next, $\lim_{n\to\infty} \frac{n}{n^4+1} = 0$. Then, by the Error Estimation Theorem for Alternating Series, we need to find n such that $a_{n+1} < 0.01$.

Since I really don't feel like solving a 4th degree polynomial equation that does not factor, we'll find n by brute force. Notice that $a_4 = \frac{4}{4^4+1} = \frac{4}{257} \approx 0.015564$ while $a_5 = \frac{5}{5^4+1} \approx 0.007987$

Therefore, we can apporximate S to within 0.01 by adding the first 4 terms of this series:

$$S_4 = -\frac{1}{2} + \frac{2}{17} - \frac{3}{82} + \frac{4}{257} \approx -0.40$$

- 7. Determine the number of terms necessary to estimate the sum of the following series to within 1×10^{-6}
 - (a) $\sum_{n=1}^{\infty} (-1)^n \frac{3}{n^2}$

Notice that this series is decreasing and its terms tend to 0 as $n \to \infty$

If $\frac{3}{n^2} < 10^{-6}$, then $\frac{3}{10^{-6}} < n^2$, so $n^2 > \sqrt{\frac{3}{10^{-6}}} = \sqrt{3000000} \approx 1732.05$, so we can estimate S to within 10^{-6} by computing S_n with n = 1732.

(b)
$$\sum_{n=1}^{\infty} (-1)^n \frac{2^n}{n!}$$

Notice that this series is decreasing and its terms tend to 0 as $n \to \infty$ Since the algebra is quite challenging, we will find n by brute force:

Notice that $a_{10} = \frac{2^{10}}{10!} \approx .000282$; $a_{12} = \frac{2^{12}}{12!} \approx .000008551$ $a_{13} = \frac{2^{13}}{13!} \approx .000001316$; $a_{14} = \frac{2^{14}}{14!} \approx .000000188$ So we can estimate S to within 10^{-6} by computing S_n with n = 13. 8. Find all real values of x for which the series $\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{n \cdot 4^n}$ converges.

We first use the ratio test on the positive part of this series:

Notice that
$$a_{n+1} = \frac{x^{n+1}}{(n+1)4^{n+1}} = \frac{4^{n+1}}{(n+1)!(n+1)!}$$
.
Then $\frac{a_{n+1}}{a_n} = \frac{x^{n+1}}{(n+1)4^{n+1}} \cdot \frac{n4^n}{x^n} = \frac{nx}{4(n+1)}$.

Therefore, $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{x}{4} \cdot \frac{n}{n+1} = \frac{x}{4}$. Hence, by the Ratio Test, $\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{n \cdot 4^n}$ converges absolutely when x < 4 and diverges when x > 4.

This test is inconclusive when |x| = 4.

When x = 4, we have $\sum_{n=1}^{\infty} (-1)^n \frac{4^n}{n \cdot 4^n} = \sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$, which converges conditionally by the alternating series test (the positive part of this series is clearly decreasing and the terms tend to zero).

When x = -4, we have $\sum_{n=1}^{\infty} (-1)^n \frac{(-4)^n}{n \cdot 4^n} = \sum_{n=1}^{\infty} (-1)^{2n} \frac{1}{n} = \sum_{n=1}^{\infty} \frac{1}{n}$, which diverges.

Therefore, this series converges for all x-values in the interval (-4.4].