
Math 262
Exam 4 - Practice Problem Solutions

1. For each of the following sequences, determine whether the sequence converges or diverges. If a sequence converges,
whenever possible, find the value of the limit of the sequence.

(a)

{

n + 2

3n − 1

}

Notice that lim
x→∞

x + 2

3x − 1
=

1

3
. Therefore, this sequence converges to

1

3
.

(b)

{

(−1)
n n + 2

3n − 1

}

Notice that if we consider the absolute value of this sequence: lim
x→∞

x + 2

3x − 1
=

1

3
.

From this, we see that the subsequence of even terms of this sequence converges to 1

3
while the subsequence of

odd terms converges to − 1

3
. Hence this sequence diverges.

(c)
{

ne−n
}

Notice that lim
x→∞

xe−x = lim
x→∞

x

ex
= lim

x→∞

1

ex
= 0.

Therefore, this sequence converges to 0.

(d)
{cos n

en

}

Notice that
−1

en
≤ cos n

en
≤ 1

en

Also, lim
x→∞

−1

en
= 0 and lim

x→∞

1

en
= 0, so by the sandwich theorem for sequences, lim

x→∞

cos n

en
= 0

(e)
{

n

√
n
}

Consider the limit of the related function: lim
x→∞

x

√
x = lim

x→∞
x

1
x .

Taking the natural logarithm of this gives: lim
x→∞

1

x
lnx = lim

x→∞

lnx

x
which, by L’Hôpital’s Rule:

= lim
x→∞

1

x

1
= lim

x→∞

1

x
= 0.

Then lim
x→∞

x
1
x = e0 = 1. Hence lim

n→∞

n

√
n = 1

(f)

{

n2n

3n

}

First, notice that an+1 =
(n + 1)2n+1

3n+1
= (n + 1)

2

3
·
(

2

3

)n

.

Also, when n > 2, 2n + 2 < 3n, so
2n + 2

3
< n or 0 < (n + 1)2

3
< n. Hence for n > 2, an > an+1 ≥ 0.

But this means that this sequence is both monotone and bounded. Hence this sequence converges.

(g)

{

(

1 +
2

n

)2n
}

Again making use of logarithms and L’Hôpital’s Rule:

lim
x→∞

2x ln

(

1 +
2

x

)

= 2 lim
x→∞

ln
(

1 + 2

x

)

1

x

= 2 lim
x→∞

1

1+ 2
x

·
(

−2x−2
)

−x−2

= 4 lim
x→∞

1

1 + 2

x

= 4

Hence lim
n→∞

(

1 +
2

n

)2n

= e4



2. Suppose a1 = 1 and an+1 =
1

2

(

an +
4

an

)

(a) Compute a5

a1 = 1; a2 = 1

2

(

1 + 4

1

)

= 5

2
; a3 = 1

2

(

5

2
+ 4·2

5

)

= 1

2

(

5

2
+ 8

5

)

= 41

20

a4 = 1

2

(

41

20
+ 4·20

41

)

= 1

2

(

41
2
+4·202

41·20

)

= 3281

1640

a5 = 1

2

(

3281

1640
+ 4·1640

3281

)

= 1

2

(

3281
2
+4·16402

1640·3281

)

= 21523361

10761680

(b) Find lim
n→∞

an [ Hint: Let L = lim
n→∞

an+1 = lim
n→∞

an. Then L =
1

2

(

L +
4

L

)

]

Solving L =
1

2

(

L +
4

L

)

for L:

2L =
L2 + 4

L
, so 2L2 = L2 + 4. Thus L2 = 4, hence L = ±2.

Since a1 is positive, and whenever an is positive, so is an+1, we can reject the negative solution and conclude that
L = 2.

3. Determine whether the following series converge or diverge. For those that converge, find the sum of the series.

(a)

∞
∑

n=1

1

2

(

−1

3

)n

This is a geometric series with a = − 1

6
and r = − 1

3
. Clearly, |r| < 1. Therefore, S =

a

1 − r
=

− 1

6

1 −
(

− 1

3

) =
− 1

6

4

3

=

−1

6
· 3

4
= −1

8
.

(b)
∞
∑

n=1

4

(

1

2

)n

This is a geometric series with a = 2 and r = 1

2
. Clearly, |r| < 1. Therefore, S =

a

1 − r
=

2

1 −
(

1

2

) =
2
1

2

= 4.

(c)
∞
∑

n=1

4n

n + 2

Notice that lim
n→∞

4n

n + 2
= lim

n→∞

4

1
= 4. Therefore, this series diverges by the nth term test.

(d)
∞
∑

n=1

9

n(n + 3)

Using partial fractions, we can rewrite
9

n(n + 3)
=

A

n
+

B

n + 3
, where A(n + 3) + Bn = 9.

Setting n = 0 gives 3A = 9 or A = 3. Setting n = −3 gives −3B = 9 or B = −3.

Then we have
9

n(n + 3)
=

3

n
− 3

n + 3
= 3

(

1

n
− 1

n + 3

)

Therefore, this is a telescoping series of the form: 3

(

1 − 1

4
+

1

2
− 1

5
+

1

3
− 1

6
...

)

Hence for n ≥ 3, Sn = 3

(

1 +
1

2
+

1

3
− 1

n + 1
− 1

n + 2
− 1

n + 3

)

Thus lim
n→∞

Sn = 3

(

1 +
1

2
+

1

3

)

=
11

2

(e)

∞
∑

n=1

4

n(n + 2)

Using partial fractions, we can rewrite
4

n(n + 2)
=

A

n
+

B

n + 2
, where A(n + 2) + Bn = 4.

Setting n = 0 gives 2A = 4 or A = 2. Setting n = −2 gives −2B = 4 or B = −2.



Then we have
4

n(n + 2)
=

2

n
− 2

n + 2
= 2

(

1

n
− 1

n + 2

)

Therefore, this is a telescoping series of the form: 2

(

1 − 1

3
+

1

2
− 1

4
+

1

3
− 1

5
...

)

Hence for n ≥ 3, Sn = 2

(

1 +
1

2
− 1

n + 1
− 1

n + 2

)

Thus lim
n→∞

Sn = 2

(

1 +
1

2

)

= 3

(f)
∞
∑

n=1

(−1)
n 4

3n

Notice that

∞
∑

n=1

(−1)
n 4

3n

∞
∑

n=1

4

(−1

3

)n

This is a geometric series with a = − 4

3
and r = − 1

3
. Clearly, |r| < 1. Therefore, S =

a

1 − r
=

− 4

3

1 −
(

− 1

3

) =
− 4

3

4

3

=

−1.

4. Use geometric series to express each of the following repeating decimals in fractional form.

(a) .111

Notice that this repeating decimal can be written as the series:

∞
∑

n=1

(

1

10

)n

This is a geometric series with a = 1

10
and r = 1

10
. Clearly, |r| < 1. Therefore, S =

a

1 − r
=

1

10

1 −
(

1

10

) =
1

10

9

10

=
1

9
.

(b) .787878

Notice that this repeating decimal can be written as the series:

∞
∑

n=1

78

(

1

100

)n

This is a geometric series with a = 78

100
and r = 1

100
. Clearly, |r| < 1. Therefore, S =

a

1 − r
=

78

100

1 −
(

1

100

) =
78

100

99

100

=

78

99
.

(c) .137137137

Notice that this repeating decimal can be written as the series:

∞
∑

n=1

137

(

1

1000

)n

This is a geometric series with a = 137

1000
and r = 1

1000
. Clearly, |r| < 1. Therefore, S =

a

1 − r
=

137

100

1 −
(

1

1000

) =

137

1000

999

1000

=
137

999
.

(d) .999

Notice that this repeating decimal can be written as the series:
∞
∑

n=1

9

(

1

10

)n

This is a geometric series with a = 9

10
and r = 1

10
. Clearly, |r| < 1. Therefore, S =

a

1 − r
=

9

10

1 −
(

1

10

) =
9

10

9

10

= 1.



5. For each of the following series, if the series is positive term, determine whether it is convergent or divergent; if the
series contains negative terms, determine whether it is absolutely convergent, conditionally convergent, or divergent.

(a)

∞
∑

n=2

4

n (lnn)
3

Notice that f(x) =
4

x (lnx)
3

is continuous and decreasing for x ≥ 2.

Consider

∫ ∞

2

4

x (lnx)
3

dx. If we let u = lnx, then du = 1

x
dx. Then, rewriting this as an improper integral:

lim
t→∞

∫ ln t

ln 2

4u−3 du = lim
t→∞

−2u−2

∣

∣

∣

∣

∣

ln t

ln 2

= lim
t→∞

− 2

(ln t)2
+

2

(ln 2)2

which converges. Therefore, the series
∞
∑

n=2

4

n (lnn)
3

converges by the integral test.

(b)

∞
∑

n=1

√
1 + n−1

n2

Since
1

n
≤ 1 for n ≥ 1,

√
1 + n−1

n2
=

√

1 + 1

n

n2
≤

√
2

n2
. Also,

∑∞
n=1

√
2

n2 is a convergent p-series. Thus the series
∞
∑

n=1

√
1 + n−1

n2
converges by comparison.

(c)

∞
∑

n=1

sin n − 2

n2

Notice that

∣

∣

∣

∣

sin n − 2

n2

∣

∣

∣

∣

≤ 3

n2
. Since

∞
∑

n=1

3

n2
is a convergent p-series, the series

∞
∑

n=1

sin n − 2

n2
converges by compar-

ison.

(d)
∞
∑

n=1

n4 + 2n − 1

n5 + 3n2 − 20

Using the limit comparison test, let bn =
1

n
.

Then lim
n→∞

an

bn

= lim
n→∞

n4 + 2n − 1

n5 + 3n2 − 20
· n

1
= lim

n→∞

n5 + 2n2 − n

n5 + 3n2 − 20
= 1.

Therefore, since

∞
∑

n=1

1

n
is divergent,

∞
∑

n=1

n4 + 2n − 1

n5 + 3n2 − 20
diverges by the Limit Comparison Test.

(e)
∞
∑

n=1

e(
1
n

+1)

n3

Since
1

n
≤ 1 for n ≥ 1, e(

1
n

+1) ≤ e2 Therefore,
e(

1
n

+1)

n3
≤ e2

n3
.

But

∞
∑

n=1

e2

n3
= e2

∞
∑

n=1

1

n3
, which is a convergent p-series. Thus

∞
∑

n=1

e(
1
n

+1)

n3
converges by comparison.

(f)
∞
∑

n=1

(−1)
n 4

n + 1

First notice that

∞
∑

n=1

4

n + 1
diverges, since if we let bn =

1

n
.

Then lim
n→∞

an

bn

= lim
n→∞

4

n + 1
· n

1
= lim

n→∞

4n

n + 1
= 4.

Therefore, since

∞
∑

n=1

1

n
is divergent,

∞
∑

n=1

4

n + 1
diverges by the Limit Comparison Test. Hence

∞
∑

n=1

(−1)
n 4

n + 1
is

not absolutely convergent.



Next, notice that lim
n→∞

4

n + 1
= 0, and

4

n + 1
≥ 4

n + 2
. Thus by the Alternating Series test,

∞
∑

n=1

(−1)
n 4

n + 1
is

conditionally convergent.

(g)

∞
∑

n=1

(

4n

5n + 1

)n

Using the Root Test, notice that n

√

(

4n

5n + 1

)n

=
4n

5n + 1
. Moreover, lim

n→∞

4n

5n + 1
=

4

5
< 1

Hence,

∞
∑

n=1

(

4n

5n + 1

)n

converges by the Root Test.

(h)
∞
∑

n=1

2 · n
3n

Using the Ratio Test, an+1 =
2(n + 1)

3n+1
.

Then
an+1

an

=
2(n + 1)

3n+1
· 3n

2n
=

n + 1

3n
.

Therefore, lim
n→∞

an+1

an

= lim
n→∞

n + 1

3n
=

1

3
< 1. Hence

∞
∑

n=1

2 · n
3n

converges by the Ratio Test.

(i)
∞
∑

n=1

(−1)
n 4n

(2n + 1)!

We first check for absolute convergence by applying the ratio test to

∞
∑

n=1

4n

(2n + 1)!
:

Notice that an+1 =
4n+1

(2(n + 1) + 1)!
=

4n+1

(2n + 3)!
.

Then
an+1

an

=
4n+1

(2n + 3)!
· (2n + 1)!

4n
=

4

(2n + 3)(2n + 2)
.

Therefore, limn→∞
an+1

an

= lim
n→∞

4

(2n + 3)(2n + 2)
= 0 < 1. Hence

∞
∑

n=1

4n

(2n + 1)!
converges by the Ratio Test.

Thus

∞
∑

n=1

(−1)
n 4n

(2n + 1)!
converges absolutely.

(j)

∞
∑

n=1

n3e−n

Using the Ratio Test, an =
n3

en
and an+1 =

(n + 1)3

en+1
=

n3 + 3n2 + 3n + 1

en+1
.

Then
an+1

an

=
n3 + 3n2 + 3n + 1

en+1
· en

n3
=

n3 + 3n2 + 3n + 1

en3
.

Therefore, lim
n→∞

an+1

an

= lim
n→∞

n3 + 3n2 + 3n + 1

en3
=

1

e
< 1. Hence

∞
∑

n=1

n3e−n converges by the Ratio Test.

(k)

∞
∑

n=1

(−1)
n

√
n

First notice that

∞
∑

n=1

1√
n

is a divergent p-series (p = 1

2
≤ 1),so this series does not converge absolutely.

Next, lim
n→∞

1√
n

= 0 and 1√
n+1

≤ 1√
n
.

Hence, by the Alternating Series Test, this series converges conditionally.

(l)

∞
∑

n=1

4n

(n!)
2



Using the Ratio Test, an+1 =
4n+1

((n + 1)!)2
=

4n+1

(n + 1)!(n + 1)!
.

Then
an+1

an

=
4n+1

(n + 1)!(n + 1)!
· n!n!

4n
=

4

(n + 1)2
.

Therefore, lim
n→∞

an+1

an

= lim
n→∞

4

(n + 1)2
= 0 < 1. Hence

∞
∑

n=1

4n

(n!)
2

converges by the Ratio Test.

(m)

∞
∑

n=1

(−1)
n 1

n

√
n

Recall that we can compute lim
x→∞

n

√
n as follows:

Consider the limit of the related function: lim
x→∞

x

√
x = lim

x→∞
x

1
x .

Taking the natural logarithm of this gives: lim
x→∞

1

x
lnx = lim

x→∞

lnx

x
which, by L’Hôpital’s Rule:

= lim
x→∞

1

x

1
= lim

x→∞

1

x
= 0.

Then lim
x→∞

x
1
x = e0 = 1. Hence lim

n→∞

n

√
n = 1

But then lim
n→∞

1
n

√
n

= 1, and hence lim
n→∞

(−1)
n 1

n

√
n

does not exist.

Thus, be this series diverges by the nth term test.

6. Estimate the sum of the series

∞
∑

n=1

(−1)
n n

n4 + 1
to within 0.01

First notice that if f(x) =
x

x4 + 1
, then f ′(x) =

(x4 + 1) − x(4x3)

(x4 + 1)2
=

−3x4 + 1

(x4 + 1)2
< 0 whenever x ≥ 1.

Next, lim
n→∞

n

n4 + 1
= 0. Then, by the Error Estimation Theorem for Alternating Series, we need to find n such that

an+1 < 0.01.

Since I really don’t feel like solving a 4th degree polynomial equation that does not factor, we’ll find n by brute force.
Notice that a4 = 4

44+1
= 4

257
≈ 0.015564 while a5 = 5

54+1
≈ 0.007987

Therefore, we can apporximate S to within 0.01 by adding the first 4 terms of this series:

S4 = − 1

2
+ 2

17
− 3

82
+ 4

257
≈ −0.40

7. Determine the number of terms necessary to estimate the sum of the following series to within 1 × 10−6

(a)

∞
∑

n=1

(−1)
n 3

n2

Notice that this series is decreasing and its terms tend to 0 as n → ∞

If
3

n2
< 10−6, then

3

10−6
< n2, so n2 >

√

3

10−6
=

√
3000000 ≈ 1732.05, so we can estimate S to within 10−6 by

computing Sn with n = 1732.

(b)

∞
∑

n=1

(−1)
n 2n

n!

Notice that this series is decreasing and its terms tend to 0 as n → ∞
Since the algebra is quite challenging, we will find n by brute force:

Notice that a10 =
210

10!
≈ .000282; a12 =

212

12!
≈ .000008551

a13 =
213

13!
≈ .000001316; a14 =

214

14!
≈ .000000188

So we can estimate S to within 10−6 by computing Sn with n = 13.



8. Find all real values of x for which the series

∞
∑

n=1

(−1)
n xn

n · 4n
converges.

We first use the ratio test on the positive part of this series:

Notice that an+1 =
xn+1

(n + 1)4n+1
=

4n+1

(n + 1)!(n + 1)!
.

Then
an+1

an

=
xn+1

(n + 1)4n+1
· n4n

xn
=

nx

4(n + 1)
.

Therefore, lim
n→∞

an+1

an

= lim
n→∞

x

4
· n

n + 1
=

x

4
. Hence, by the Ratio Test,

∞
∑

n=1

(−1)
n xn

n · 4n
converges absolutely when

x < 4 and diverges when x > 4.

This test is inconclusive when |x| = 4.

When x = 4, we have
∞
∑

n=1

(−1)
n 4n

n · 4n
=

∞
∑

n=1

(−1)
n 1

n
, which converges conditionally by the alternating series test (the

positive part of this series is clearly decreasing and the terms tend to zero).

When x = −4, we have

∞
∑

n=1

(−1)
n (−4)n

n · 4n
=

∞
∑

n=1

(−1)
2n 1

n
=

∞
∑

n=1

1

n
, which diverges.

Therefore, this series converges for all x-values in the interval (−4.4].


