Math 262
Exam 4 - Practice Problem Solutions

1. For each of the following sequences, determine whether the sequence converges or diverges. If a sequence converges,
whenever possible, find the value of the limit of the sequence.
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Notice that lim Tt 1= 3 Therefore, this sequence converges to 3
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Notice that if we consider the absolute value of this sequence: lim rre =.
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From this, we see that the subsequence of even terms of this sequence converges to % while the subsequence of

odd terms converges to —%. Hence this sequence diverges.
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Notice that lim ze ® = lim — = lim — = 0.
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Therefore, this sequence converges to 0.
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Also, lim — =0 and lim — = 0, so by the sandwich theorem for sequences, lim =
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Consider the limit of the related function: lim ¢z = lim z=.
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Taking the natural logarithm of this gives: lim —Ilnz = lim ae which, by L'Hopital’s Rule:
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Then lim z# = ¢ = 1. Hence lim ¥n =1
r—00 n—oo

n2"
CRES
. . (4127t 2 /2\"
First, notice that a,4+1 = T (n+ 1)§ 13) -
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Also, when n > 2, 2n + 2 < 3n, so n <nor0<(n+1)%<n. Hence for n > 2, a,, > an41 > 0.

But this means that this sequence is both monotone and bounded. Hence this sequence converges.
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Again making use of logarithms and L’Hopital’s Rule:
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2. Suppose a1 =1 and ap,41 =

(a)

(b)
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m=la=;01+7)=5%a=503+%
asn = 1 (g 4-20) _ 1 (4124420%) _ 3281
4 = 2 \20 41 - 2 41-20 1640

s = 1 (3281 4 4~1640) _ 1 3281244-1640% | _ 21523361
5 = 2 (1640 3281 -2 1640-3281 ~ 10761680
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Find lim a, [ Hint: Let L = lim a,41 = lim a,. Then L = 3 (L + ) ]
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Solving L = 3 (L + L) for L:

1?2 +4

2L = ,50 2L? = L? + 4. Thus L? = 4, hence L = +2.

Since a; is positive, and whenever a,, is positive, so is a,+1, we can reject the negative solution and conclude that
L=2.

3. Determine whether the following series converge or diverge. For those that converge, find the sum of the series.

(a)
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This is a geometric series with a = —% and r = —%. Clearly, |r| < 1. Therefore, S = =
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This is a geometric series with a = 2 and r = % Clearly, |r| < 1. Therefore, S = 1 ¢ 1 (1) =3=4
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Notice that lim 5 = lim 1= 4. Therefore, this series diverges by the nth term test.
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Using partial fractions, we can rewrite —— = — + —— where A(n+ 3) + Bn =09.
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Setting n = 0 gives 3A =9 or A = 3. Setting n = —3 gives —3B =9 or B = —3.
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Therefore, this is a telescoping series of the form: 31— -+ - — -4+ - — —...
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Using partial fractions, we can rewrite —— = — + —— where A(n + 2) + Bn = 4.
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Setting n = 0 gives 2A =4 or A = 2. Setting n = —2 gives —2B =4 or B = —2.



4. Use

(a)

4 2 2 1 1
Then we have —— = — — —92( =
nn+2) n n+2 n n+2

1 1 1 1 1
Therefore, this is a telescoping series of the form: 2 (1 —3 + > 1 + 3~ 5)
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This is a geometric series with a = —3 and r = —%. Clearly, |r| < 1. Therefore, S = 1 ¢ - N (3 y =2 =
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geometric series to express each of the following repeating decimals in fractional form.
A111
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Notice that this repeating decimal can be written as the series: Z (10)
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This is a geometric series with a = 110 and r = %. Clearly, |r| < 1. Therefore, S = S 10 v = 19—0 = -
l—r 1-(3%) % 9
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Notice that this repeating decimal can be written as the series: Z 78 (1 0 O)
n=1
78 78
This is a geometric series with a = {5 and r = 1&5. Clearly, |r| < 1. Therefore, S = ¢ - 00— = 20 —
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Notice that this repeating decimal can be written as the series: Z 137 ()
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This is a geometric series with @ = 3% and r = . Clearly, |r| < 1. Therefore, S = R 100
g = 1000 = 1000° Y : Tl 1 (o)
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Notice that this repeating decimal can be written as the series: Z 9 (10>
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This is a geometric series with a = = and r = . Clearly, |r| < 1. Therefore, S = 1 ¢ - 1 18 0 =0 =1
—r _ (1 9
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5. For each of the following series, if the series is positive term, determine whether it is convergent or divergent; if the
series contains negative terms, determine whether it is absolutely convergent, conditionally convergent, or divergent.
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= n(ln n)?

Notice that f(x) =

is continuous and decreasing for x > 2.
z(lnx
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Consider / ———— dw. If we let u =1Inz, then du = %dm. Then, rewriting this as an improper integral:
2 z(lnzx
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lim 4u™ du = lim —2u"2 = lim —
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which converges. Therefore, the series Z ———— converges by the integral test.
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Since — < 1 forn > 1, Jr f . Also, 22;1 g is a convergent p-series. Thus the series
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Z ———— converges by comparison.
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Notice that | ———| < —. Since Z is a convergent p-series, the series Z ———— converges by compar-
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ison.
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Using the limit comparison test, let b, = —.
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Then lim 2™ — lim n+7n gy et mn
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Therefore, since Z — is divergent Z w diverges by the Limit Comparison Test
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Since — < 1 for n > 1, e(x+1) < €2 Therefore, ¢ < 6—3
n n
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But Z 3= e? Z e which is a convergent p-series. Thus Z
=1 =1
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First notice that E o diverges, since if we let b, =
n
=1

converges by comparison.

n 4 4
Then lim - = lim -ﬁ: lim —— =4,

4 4
Therefore, since Z is divergent, Z —_— dlverges by the Limit Comparison Test. Hence Z Y is

n=1
not absolutely convergent
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Next, notice that lim = 0, and is
n+1

conditionally convergent.
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. Thus by the Alternating Series test, Z (="
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Moreover, lim =-<1
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Using the Root Test, notice that {/ ( —7—) = =5
a = .
sing the Root Test, notice 5n + 1 n—oodn+1 5
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Hence, ( n ) converges by the Root Test.
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Using the Ratio Test, a,4+1 = %
2 1 " 1

Then 2241 — (n+1) -3—: nt .

an 3n+l 2n 3n
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Therefore, lim —— = lim = — < 1. Hence Z —— converges by the Ratio Test.
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We first check for absolute convergence by applying the ratio test to ; m
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Notice that a,.1 = = .
oHee A Gl = o T D)+ )l 20+ 3)!

Then &+ — gn+1 ' (2n +1)! _ 4 .

an, (2n + 3)! 4n (2n 4+ 3)(2n + 2)
Therefore, lim dntl — Jim 1 =0 < 1. Hence i 4 converges by the Ratio Test
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Thus nz::l (=" Gn D converges absolutely.
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Using the Ratio Test, a,, = Z—n and apy1 = (ne;;l) _n + Z”j—l n .
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Therefore, lim On+1 = lim n”ton —:’; not = — < 1. Hence Zn?)e_n converges by the Ratio Test.
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First notice that Z is a divergent p-series (p = % < 1),s0 this series does not converge absolutely.
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Next, nh_)rrgoﬁ =0 and Tt < T
Hence, by the Alternating Series Test, this series converges conditionally.
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Using the Ratio Test, a,4+1 = CESIE = CESNICESNE
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Therefore, lim Intl _ i ——— =0 < 1. Hence Z converges by the Ratio Test.
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Recall that we can compute lim {/n as follows:

Tr— 00
Consider the limit of the related function: lim /z = lim T=.
Tr—00 Tr— 00

1 |
Taking the natural logarithm of this gives: lim —Inz = lim e which, by L'Hopital’s Rule:

r—00 I r—oo I
1 1

= lim £ = lim — =0.
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Then lim z# = ¢® = 1. Hence lim /n =1
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But then lim —= =1, and hence lim (—1)" —= does not exist.
n—oo ¥Yn n—oo (‘/fﬁ

Thus, be this series diverges by the nth term test.

6. Estimate the sum of the series Z (-1)" — 46 within 0.01

— nt+1
First notice that if f(x) T then f(z) (1 +1) - o(da?) _3x4+1<0 h > 1
irst notice that if f(zr) = ——, then f'(z) = = whenever x > 1.
xt+1 (% +1)2 (% +1)2
Next, lim % = 0. Then, by the Error Estimation Theorem for Alternating Series, we need to find n such that
n—oo N,
Api1 < 0.01.

Since I really don’t feel like solving a 4th degree polynomial equation that does not factor, we’ll find n by brute force.

Notice that a4 = 525 = 587 ~ 0.015564 while a5 = 5°= ~ 0.007987
Therefore, we can apporximate S to within 0.01 by adding the first 4 terms of this series:

_ 1,2 3 4
Si=—-5+1 — 5t 3~ 040

7. Determine the number of terms necessary to estimate the sum of the following series to within 1 x 1076
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Notice that this series is decreasing and its terms tend to 0 as n — oo

3 3 3

If << 107°, then 106 < n? son® >/ 196 = v/3000000 ~ 1732.05, so we can estimate S to within 1076 by
n

computing 5,, with n = 1732.
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Notice that this series is decreasing and its terms tend to 0 as n — oo

Since the algebra is quite challenging, we will find n by brute force:
10 12
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Notice that a9 = 1o =~ .000282; a5 = 1 ~ .000008551

13 14

2 2
g = T3~ .000001316; a4 = T~ .000000188

So we can estimate S to within 1075 by computing S, with n = 13.
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8. Find all real values of x for which the series Z (="
n=1

We first use the ratio test on the positive part of this series:

xn—i—l 4n+1

Notice that a,4+1 = (n + 1)an+1 = (n+D)l(n+ 1)

converges.

Then %ot _ & omd"  mz
an (n+1)4n+l  gn 4(n+1)

n
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Therefore, nlLH;o a nhﬂngo I nrl 1 Hence, by the Ratio Test, T;( 1) T converges absolutely when
x < 4 and diverges when x > 4.
This test is inconclusive when |z| = 4.
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When = = 4, we have Z (-1) = Z (—=1)" —, which converges conditionally by the alternating series test (the

n=1 n-4n n=1 n
positive part of this series is clearly decreasing and the terms tend to zero).
When z = —4, we h —1" = —1)* = =3 2, which di .

en x we avenz:;( ) T nz::l( ) - ;nwm iverges

Therefore, this series converges for all z-values in the interval (—4.4].



