1. A function f is graphed below.

(a) Find f(-1), f(2), and f(4)

(b) Find the domain and range of f

- (c) Find the intervals where f'(x) is negative
- (d) Find the intervals where f''(x) is positive.

(e) Find $\lim_{x\to 4} f(x)$

(f) Find $\lim_{x\to 0^-} f(x)$

(g) Find $\lim_{x \to -7} f(x)$

(h) Find $\lim_{x\to\infty} f(x)$

2. Evaluate each of the following. You do not need to simplify your answers.

(a)
$$\frac{d}{dx} \left[5x^{\frac{5}{2}} - 2x^{\frac{2}{3}} + 5 \right]$$

(d)
$$\frac{d}{dt} \left(\frac{5t^2 + 11}{4 - 2\sin(t)} \right)$$

(b)
$$\frac{d}{dx} \left(\frac{7x+2}{x^2} \right)$$

(e)
$$\frac{d}{dx} ((2x-1)(x^2-3x+2)(2x+1))$$

(c)
$$\frac{d}{dx} \left(x^5 \cos(x) \right)$$

$$(f) \frac{d^2}{dx^2} \left(\sqrt{4x^3 + x - 1} \right)$$

(g)
$$\frac{d}{dx} \left(x\sqrt{9-x^2} \right)$$

(i)
$$\frac{d^3}{dx^3} \left(\tan(x) \right)$$

(h)
$$\frac{d}{dx} \left(\frac{x \cos(2x)}{1 + x^2} \right)$$

3. Find $\frac{dy}{dx}$ for an implicit function defined by the equation $x^2 - xy + y^2 = 4$

4. Find the equation of the tangent line to the graph of $f(x) = \tan(2x)$ when $x = \frac{\pi}{8}$

5. Evaluate each of the following:

(a)
$$\int (2t-4)^3 dt$$

$$(d) \int \frac{x^4 - 2x^3}{x^2} dx$$

(b)
$$\int_{\frac{\pi}{6}}^{\frac{2\pi}{3}} \sin(x) \, dx$$

(e)
$$\int \tan^2(x) \sec^2(x) \ dx$$

(c)
$$\int_0^1 (4x^2 - 7x + 3) x^2 dx$$

(f)
$$\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^3(x) \cos(x) \, dx$$

Calculus I Review

(g)
$$\int \frac{x^2 - 2x - 3}{x + 1} dx$$

(i)
$$\int_{13}^{20} x\sqrt{x^2 - 144} \, dx$$

(h)
$$\int_{-2}^{3} (2x-5)(3x+1) dx$$

(j)
$$\int \frac{7x^2 \cos(x^3)}{\sin^3(x^3)} dx$$

6. Use the Fundamental Theorem of Calculus to evaluate each of the following:

(a)
$$\int \frac{d}{dx} \left(\sin \left(\sqrt[3]{x} \right) \right) dx$$

(b)
$$\frac{d}{dx} \int \tan\left(x^2 + 1\right) dx$$

(a)
$$\int \frac{d}{dx} \left(\sin \left(\sqrt[3]{x} \right) \right) dx$$
 (b) $\frac{d}{dx} \int \tan \left(x^2 + 1 \right) dx$ (c) $\frac{d}{dx} \int_0^{\frac{\pi}{6}} \frac{\sin \left(3x^2 \right)}{\cos \left(2x \right)} dx$