Math 127

Polynomial Practice Problems

- 1. For each of the following quadratic functions:
 - Find the vertex and axis of symmetry
 - Find all intercepts
 - Graph the function and list its range in interval notation
 - (a) $f(x) = 4(x+3)^2 7$
 - (b) $f(x) = -3(x-4)^2 + 11$
 - (c) $f(x) = x^2 2x 15$
 - (d) $f(x) = 3x^2 2x 4$
 - (e) $f(x) = -2x^2 + 8x 1$
- 2. Among all pairs of numbers whose sum is 20, find the pair whose product is as large as possible. Also find the value of the maximum product.
- 3. Suppose that you have 600 feet of fencing to enclose a rectangular field that borders a river on one side. If you do not fence the side along the river, find the length and width of the maximum sized field that you can fence in.
- 4. Find the zeros for each polynomial function given. Also find the multiplicity of each zero.
 - (a) $f(x) = x^3 x^2 9x + 9$
 - (b) $f(x) = 2x^3 5x^2 12x$
 - (c) $f(x) = x^2(x-1)(x+3)^3$
 - (d) $f(x) = x^3(x-2)(x^2-4)^2$
- 5. Use the Leading Term Test to determine the end behavior for each polynomial function given.
 - (a) $f(x) = x^5 4x^3 + 17x^2 + 5x 14$
 - (b) $f(x) = -3x^8 5x^5 + 3x^2 + 17$
 - (c) $f(x) = x^2(2x-1)(x+2)$
 - (d) $f(x) = -4x^2(x-2)(x^2+1)$
- 6. Use the Intermediate Value Theorem to show that each polynomial has a zero on the given interval.
 - (a) $f(x) = x^4 3x^2 + 5x 7$ on [1, 2]
 - (b) $f(x) = 4x^3 12x^2 + 25x 100$ on [3, 5]
- 7. Use the Leading Coefficient test to determine the end behavior, find all x-intercepts and their multiplicities, find the y-intercept and any symmetry, and then graph the given polynomial.
 - (a) $f(x) = 2x^3 + 3x^2 2x$
 - (b) $f(x) = x^3 x^2 16x + 16$
 - (c) $f(x) = x^2(x-1)(x+4)$
 - (d) $f(x) = x^3(x+1)(x-2)^2(x-4)$
- 8. Use Long Division to find the following Quotients:
 - (a) $\frac{4x^4 4x^2 + 6x}{x 4}$
 - (b) $\frac{x^4 3x^2 + 7x + 5}{x^2 + 1}$

(c)
$$\frac{3x^5 - 7x^3 + 5x^2 - 3}{x^2 - x + 3}$$

9. Use synthetic division to find the indicated function values:

(a)
$$f(7)$$
 if $f(x) = x^3 - 4x^2 + 7x - 5$

(b)
$$f(-1)$$
 if $f(x) = x^5 - 3x^3 + 3x + 4$

(c)
$$f(2)$$
 if $f(x) = x^7 - 3x^3 + 4x - 1$

10. Solve the following equations:

(a)
$$2x^3 - 3x^2 - 11x + 6 = 0$$
 given that -2 is a zero of $f(x) = 2x^3 - 3x^2 - 11x + 6$

(b)
$$3x^3 + 7x^2 - 22x - 8 = 0$$
 given that $-\frac{1}{3}$ is a zero of $f(x) = 3x^3 + 7x^2 - 22x - 8$

11. Use the Rational Zero Theorem to find all possible zeros for each polynomial given.

(a)
$$f(x) = x^3 + 3x^2 - 6x - 8$$

(b)
$$f(x) = 2x^4 + 3x^3 - 11x^2 - 9x + 15$$

(c)
$$f(x) = 4x^5 - 8x^4 - x + 2$$

- 12. Find a 5th degree polynomial f(x) for which $\frac{1}{2}$, -1, 2, and $\pm i$ are all zeros and with f(1) = 12.
- 13. Solve the following inequalities. Express your solution in interval notation and graph the solution on a number line.

(a)
$$2x^2 + x - 6 > 0$$

(b)
$$3x^2 + 5x + x \le 2x^2 + 3x + 7$$

(c)
$$\frac{x^2 + 2x + 1}{x - 3} \ge 0$$

(d)
$$\frac{(x+3)^2(x-2)}{(x+4)(x+2)} \le 0$$

(e)
$$\frac{1}{x-2} \ge \frac{3}{x+1}$$