
Math 262
Practice Problems Solutions
Power Series and Taylor Series

1. For each of the following power series, find the interval of convergence and the radius of convergence:

(a)

∞
∑

n=1

(−1)nn2xn

Notice that an+1 = (−1)n+1(n + 1)2xn+1. Then lim
n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

= lim
n→∞

(n + 1)2|x|n+1

n2|x|n = lim
n→∞

|x|n
2 + 2n + 1

n2

= |x| lim
n→∞

2n + 2

2n
= |x| lim

n→∞

2

2
= |x|, so this series converges absolutely for −1 < x < 1.

Notice when x = 1, we have
∞
∑

n=1

(−1)nn21n =
∞
∑

n=1

(−1)nn2 which diverges by the nth term test.

Similarly, when x = −1, we have

∞
∑

n=1

(−1)nn2(−1)n =

∞
∑

n=1

(−1)2nn2 =

∞
∑

n=1

1 which diverges by the nth term test.

Hence, the interval of convergence is: (−1, 1) and the radius convergence is: R = 1.

(b)

∞
∑

n=1

2n

n2
(x − 3)n

Notice that an+1 =
2n+1

(n + 1)2
(x − 3)n+1. Then lim

n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

= lim
n→∞

2n+1|x − 3|n+1

(n + 1)2
· n2

2n|x − 3|n

= lim
n→∞

|x−3|·2· n
2 + 2n + 1

n2
= 2|x−3| lim

n→∞

2n + 2

2n
= 2|x−3| lim

n→∞

2

2
= 2|x−3|, so this series converges absolutely

when |x − 3| < 1
2 , or for

5

2
< x <

7

2
.

Notice when x =
5

2
, we have

∞
∑

n=1

2n

n2
(−1

2
)n =

∞
∑

n=1

(−1)n

n2
Thus, since

∞
∑

n=1

1

n2
is a convergent p-series, the original

series converges absolutely.

Similarly, when x =
7

2
, we have

∞
∑

n=1

2n

n2
(
1

2
)n =

∞
∑

n=1

(1)n

n2
=

∞
∑

n=1

1

n2
, which is a convergent p-series.

Hence, the interval of convergence is:

[

5

2
,
7

2

]

and the radius convergence is: R =
1

2
.

(c)

∞
∑

n=1

n3

3n
(x + 1)n

Notice that an+1 =
(n + 1)3

3n+1
(x + 1)n+1. Then lim

n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

= lim
n→∞

(n + 1)3|x + 1|n+1

3n+1
· 3n

n3|x + 1|n

=
1

3
|x + 1| lim

n→∞

(n + 1)3

n3
, which, after a few applications of L’Hôpital’s Rule, is

|x + 1|
3

, so this series converges

absolutely when |x + 1| < 3 or for −4 < x < 2.

Notice when x = −4, we have

∞
∑

n=1

n3

3n
(−3)n =

∞
∑

n=1

(−1)nn3, which diverges by the nth term test.

Similarly, when x = 2, we have

∞
∑

n=1

n3

3n
3n =

∞
∑

n=1

n3 which diverges by the nth term test.

Hence, the interval of convergence is: (−4, 2) and the radius convergence is: R = 3.



(d)

∞
∑

n=1

(−1)n 10n

n!
(x − 10)n

Notice that an+1 = (−1)n+1 10n+1

(n + 1)!
(x − 10)n+1. Then lim

n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

= lim
n→∞

10n+1|x − 10|n+1

(n + 1)!
· n!

10n|x − 10|n

= |x − 10| lim
n→∞

10

n + 1
= 0

Hence the interval of convergence is (−∞,∞) and R = ∞.

(e)
∞
∑

n=1

(−1)n 1

n10n
(x − 2)n

Notice that an+1 = (−1)n+1 1

(n + 1)10n+1
(x − 2)n+1. Then lim

n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

= lim
n→∞

|x − 2|n+1

(n + 1)10n+1
· n10n

|x − 2|n

=
1

10
|x − 2| lim

n→∞

n

n + 1
=

1

10
|x − 2|, so this series converges absolutely when |x − 2| < 10 or for −8 < x < 12.

Notice when x = −8, we have
∞
∑

n=1

(−1)n 1

n10n
(−10)n =

∞
∑

n=1

(−1)n 1

n
(−1)n =

∞
∑

n=1

1

n
, which diverges since it is the

harmonic series.

Similarly, when x = 10, we have
∞
∑

n=1

(−1)n 1

n10n
10n =

∞
∑

n=1

(−1)n 1

n
which converges by the Alternating Series Test.

Hence, the interval of convergence is: (−8, 10] and the radius convergence is: R = 10.

2. Use a known series to find a power series in x that has the given function as its sum:

(a) x sin(x3)

Recall the Maclaurin series for sinu =
∞
∑

n=0

(−1)n u2n+1

(2n + 1)!

Therefore, sin(x3) =

∞
∑

n=0

(−1)n (x3)2n+1

(2n + 1)!
=

∞
∑

n=0

(−1)n (x)6n+3

(2n + 1)!
.

Hence x sin(x3) =
∞
∑

n=0

(−1)n (x)6n+4

(2n + 1)!
.

(b)
ln(1 + x)

x

Recall the Maclaurin series for ln(1 + x) =

∞
∑

n=0

(−1)n xn+1

n + 1

Therefore,
ln(1 + x)

x
=

∞
∑

n=0

(−1)n xn

n + 1

(c)
x − arctan x

x3

Recall the Maclaurin series for arctan(x) =
∞
∑

n=0

(−1)n x2n+1

2n + 1
= x − x3

3
+

x5

5
− x7

7
+ · · ·

Therefore, x − arctan(x) = x −
(

x − x3

3
+

x5

5
− x7

7
+ · · ·

)

=

∞
∑

n=1

(−1)n+1 x2n+1

2n + 1

Hence
x − arctan x

x3
=

∞
∑

n=1

(−1)n+1 x2n−2

2n + 1



3. Use a power series to approximate each of the following to within 3 decimal places:

(a) arctan
1

2

Notice that the Maclaurin series arctan(x) =
∞
∑

n=0

(−1)n x2n+1

2n + 1
is an alternating series satisfying the hypotheses of

the alternating series test when x = 1
2 . Then to find our approximation, we need to find n such that

(.5)2n+1

2n + 1
<

.0005.

a0 =
1

2
, a1 = − 1

24
≈ 0.04667, a3 =

1

160
= 0.00625, a4 = − 1

896
≈ −0.001116, and a5 ≈ 0.00217

Hence arctan
1

2
≈ 1

2
− 1

24
+

1

160
− 1

896
≈ 0.463

(b) ln(1.01)

Notice that the Maclaurin series ln(1 + x) =
∞
∑

n=0

(−1)n xn+1

n + 1
is an alternating series satisfying the hypotheses

of the alternating series test when x = 0.01. Then to find our approximation, we need to find n such that
(0.1)n+1

n + 1
< .0005.

a0 = 0.01, a1 = −0.00005

Hence ln(1.01) ≈ 0.010

(c) sin
(

π
10

)

Notice that the Maclaurin series sin x =

∞
∑

n=0

(−1)n x2n+1

(2n + 1)!
is an alternating series satisfying the hypotheses of the

alternating series test when x = π
10 . Then to find our approximation, we need to find n such that

( π
10 )2n+1

(2n + 1)!
< .0005.

a0 = π
10 ≈ 0.314159, a1 ≈ −0.0051677, a2 ≈ 0.0000255

Hence sin
( π

10

)

≈ 0.314159 − 0.0051677 ≈ 0.309

4. For each of the following functions, find the Taylor Series about the indicated center and also determine the interval of
convergence for the series.

(a) f(x) = ex−1, c = 1

Notice that f ′(x) = ex−1 and f ′′(x) = ex−1. In fact, f (n)(x) = ex−1 for every n.

Then f (n)(1) = e0 = 1 for every n, and hence an = 1
n! for every n.

Thus ex−1 =

∞
∑

n=0

(x − 1)n

n!
.

To find the interval of convergence, notice that lim
n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

= lim
n→∞

|x − 1|n+1

(n + 1)!
· n!

|x − 1|n = |x− 1| lim
n→∞

1

n + 1
= 0

Thus this series converges on (−∞,∞) and R = ∞.

(b) f(x) = cos x, c =
π

2
f ′(x) = − sin x, f ′′(x) = cos x, f ′′′(x) = sin x, f4(x) = − cos x, and the same pattern continues from there.

Therefore, f
(π

2

)

= cos
π

2
= 0 f ′

(π

2

)

= − sin
π

2
= −1, f ′′

(π

2

)

= − cos
π

2
= 0, f ′′′

(π

2

)

= sin
π

2
= 1, f4

(π

2

)

=

cos
π

2
= 0, and the pattern continues from there.

Therefore, a0 = 0, a1 = −1, a2 = 0, a3 = 1
3! = 1

6 · · ·

Hence the series is: cos x =

∞
∑

n=0

(−1)n+1 1

(2n + 1)!
(x − π

2
)2n+1

To find the interval of convergence, notice that lim
n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

= lim
n→∞

|x − π
2 |n+1

(2n + 3)!
· (2n + 1)!

|x − π
2 |n

= |x − π

2
| lim
n→∞

1

(2n + 3)(2n + 2)
= 0

Thus this series converges on (−∞,∞) and R = ∞.



(c) f(x) =
1

x
, c = −1

f ′(x) = −x−2, f ′′(x) = 2x−3, f ′′′(x) = −6x−4, so fn(x) = (−1)nx−(n+1)

Then f(−1) = −1, f ′(−1) = −1, f ′′(−1) = −2, f ′′′(−1) = −6, and fn(−1) = −n!.

Therefore, a0 = −1, a1 = −1, a2 = −1, a3 = −1, and, in fact, an = −1 for all n.

Hence
1

x
=

∞
∑

n=0

(−1)(x − 1)n

To find the interval of convergence, notice that lim
n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

= lim
n→∞

(−1)|x − 1|n+1

(−1)|x − 1|n = |x − 1|, so this series

converges absolutely for 0 ≤ x ≤ 2

When x = 0, we have
∞
∑

n=0

(−1)(−1)n, which diverges by the nth term test.

Similarly, when x = 2 we have

∞
∑

n=0

(−1)(1)n, which also diverges by the nth term test.

Thus this series converges on (0, 2) and R = 1.

5. For each of the following functions, find the Taylor Polynomial for the function at the indicated center c. Also find the
Remainder term.

(a) f(x) =
√

x, c = 1, n = 3.

First, f ′(x) =
1

2
x−

1
2 , f ′′(x) = −1

4
x−

3
2 , f ′′′(x) =

3

8
x−

5
2 , and f (4)(x) = −15

16
x−

7
2 .

Then f(1) = 1, f ′(1) =
1

2
, f ′′(1) = −1

4
, f ′′′(1) =

3

8
.

Hence a0 = 1, a1 = 1
2 , a2 = − 1

8 , and a3 = 1
16

Thus P3(x) = 1 + 1
2 (x − 1) − 1

8 (x − 1)2 + 1
16 (x − 1)3

and R3(x) = f(4)(z)
4! (x − 1)4 = 5z

−

7
2

128 (x − 1)4

(b) f(x) = lnx, c = 1, n = 4.

First, f ′(x) = x−1, f ′′(x) = −x−2, f ′′′(x) = 2x−3, f (4)(x) = −6x−4, and f (5)(x) = 24x−5.

Then f(1) = 0, f ′(1) = 1, f ′′(1) = −1, f ′′′(1) = 2, and f (4)(1) = −6.

Hence a0 = 0, a1 = 1, a2 = − 1
2 , a3 = 1

3 , and a4 = − 1
4

Thus P4(x) = 0 + (x − 1) − 1
2 (x − 1)2 + 1

3 (x − 1)3 − 1
4 (x − 1)4

and R4(x) = f(5)(z)
5! (x − 1)5 = 24z−5

120 (x − 1)5 = z−5

5 (x − 1)5

(c) f(x) =
√

1 + x2, c = 0, n = 4.

First, f ′(x) = x(1 + x2)−
1
2 , f ′′(x) = (1 + x2)−

1
2 − x2(1 + x2)−

3
2 , f ′′′(x) = −3x(1 + x2)−

3
2 + 3x3(1 + x2)−

5
2 ,

f (4)(x) = −3(1 + x2)−
3
2 + 18x2(1 + x2)−

5
2 − 15x4(1 + x2)−

7
2 , and f (5)(x) = 45x(1 + x2)−

5
2 − 150x3(1 + x2)−

7
2 +

105x5(1 + x2)−
9
2

Then f(0) = 1, f ′(0) = 0, f ′′(0) = 1, f ′′′(0) = 0, and f (4)(0) = −3.

Hence a0 = 1, a1 = 0, a2 = 1
2 , a3 = 0, and a4 = − 1

8

Thus P4(x) = 1 + 1
2x2 − 1

8x4

and R4(x) = f(5)(z)
5! x5 = 45z(1+z2)−

5
2 −150z3(1+z2)−

7
2 +105z5(1+z2)−

9
2

120 x5

6. Estimate each of the following using a Taylor Polynomial of degree 4. Also find the error for your approximation.
Finally, find the number of terms needed to guarantee an accuracy or at least 5 decimal places.

(a) e0.1

Recall that ex =

∞
∑

n=0

xn

n!
.

Then P4(x) = 1 + x +
x2

2
+

x3

6
+

x4

24
, and R4 =

ez

5!
x5



When x = 0.1, P4(x) ≈ 1 + 0.1 + 0.005 + 0.0001667 + .000004167 = 1.105170867

In general, Rn(x) =
f (n+1)(z)

(n + 1)!
xn+1 =

ez

(n + 1)!
(0.1)n+1, where 0 ≤ z ≤ 0.1.

Since ex is increasing, we need to find n so that
e0.1

(n + 1)!
(0.1)n+1 < 0.000005

When we use P4(x), our error is at most
e0.1

5!
(0.1)5 ≈ 0.000000092 (in fact, one would only need P3(x) to get

within 5 decimal places).

(b) ln 0.9

Recall that ln(1 + x) =

∞
∑

n=0

(−1)n xn+1

n + 1
.

We will take x = −0.1 so that ln(1 + x) = ln(.9)

Then P4(x) = x − x2

2
+

x3

3
− x4

4
. Also, f (5)(x) = 24(1 + x)−5.

Therefore, R4 =
24(1 + z)−5

5!
x5. In general, Rn(x) = (−1)n (1 + z)−(n+1)

n + 1
xn+1.

When x = −0.1, P4(x) ≈ −0.1 − 0.005 − 0.000333333 − .000025 = −0.105358333

Since Rn(x) =
f (n+1)(z)

(n + 1)!
xn+1 = (−1)n (1 + z)−(n+1)

n + 1
xn+1, where −0.1 ≤ z ≤ 0.

Since ln(1+x) is negative and increasing when −.1 < x < 0, we need to find n so that (−1)n (1 − .1)−(n+1)

n + 1
xn+1 <

0.000005

When we use P4(x), our error is at most
(1 − .1)−(5)

5
(0.1)5 ≈ 0.000084675.

If we use P5(x), our error is at most
(1 − .1)−(6)

6
(0.1)6 ≈ 0.000000314, so this is a sufficient number of terms to

approximate to at least 5 decimal places.

(c)
√

1.2

We will use f(x) =
√

x centered at c = 1 and we will take x = 1.2.

Then f ′(x) =
1

2
x−

1
2 , f ′′(x) = −1

4
x−

3
2 , f ′′′(x) =

3

8
x−

5
2 , f (4)(x) = −15

16
x−

7
2 , and f (5)(x) = −105

32
x−

9
2 .

Then f(1) = 1, f ′(1) =
1

2
, f ′′(1) = −1

4
, f ′′′(1) =

3

8
, and f (4)(1)=−

15
16 .

Hence a0 = 1, a1 = 1
2 , a2 = − 1

8 , a3 = 1
16 , and a4 = − 5

128

Thus P4(x) = 1 + 1
2 (x − 1) − 1

8 (x − 1)2 + 1
16 (x − 1)3 − 5

128 (x − 1)4

and R4(x) = f(5)(z)
5! (x − 1)5 = 7z

−

9
2

256 (x − 1)5

Thus
√

1.2 ≈ P4(1.2) = 1 +
1

2
(0.2) − 1

8
(0.2)2 +

1

16
(0.2)3 − 5

128
(0.2)4 ≈ 1.0954375

The error of this approximation is at most:
7(1.2)−

9
2

256
(0.2)5 ≈ .000003852

Hence this estimate is already sufficient to approximate to 5 decimal places (one can easly verify that P3(x) is
only accurate to 4 decimal places).


