Math 310 Chapter 11 Addendum

Here are a couple of fixes to things that I messed up in class last week:

1. Claim: $x\overline{y} + \overline{x}y = (x+y)\overline{(xy)}$

Proof:

Statement	Reason
$x\overline{y} + \overline{x}y$	Given
$\overline{x\overline{x} + x\overline{y} + \overline{x}y + \overline{y}y}$	Zero Property
$x\overline{x} + x\overline{y} + y\overline{x} + y\overline{y}$	Commutative Law
$x(\overline{x} + \overline{y}) + y(\overline{x} + \overline{y})$	Distributive Law
$\overline{(\overline{x}+\overline{y})x+(\overline{x}+\overline{y})y}$	Commutative Law
$(\overline{x} + \overline{y})(x+y)$	Distributive Law
$\overline{(xy)}(x+y)$	De Morgan's Law

2. Finding the **product-of-sums** form for a Boolean expression:

Recall that given a Boolean Function $F(x_1, x_2, ..., x_n)$, a *minterm* for this function is a product $y_1y_2...y_n$ where each y_i is equal to either x_i or $\overline{x_i}$.

Similarly, a maxterm is a sum of the form $(y_1 + y_2 + ... + y_n)$, where we again assume that each y_i is equal to either x_i or $\overline{x_i}$.

We will illustrate the process of finding the **product-of-sums** expansion (or the **conjunctive normal form**) by means of an example:

Example: Consider the Boolean function given by the following table

x	y	z	F(x, y, z)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

To find the disjunctive normal for for F, we find the minterm associated with each input that leads to an output of 1. We use x_i when the corresponding input value is a 1, and we use $\overline{x_i}$ when the corresponding input value is 0. Then the three minterms for this function are \overline{xyz} , \overline{xyz} , and $xy\overline{z}$.

Therefore, $F(x, y, z) = \overline{x}y\overline{z} + \overline{x}yz + xy\overline{z}$ is the disjunctive normal form for F.

To find the conjunctive normal for for F, we find the maxtern associated with each input that leads to an output of 0 (so precisely the opposite of the rows used before). We use x_i when the corresponding input value is a 0, and we use $\overline{x_i}$ when the corresponding input value is 1. Then the five minterms for this function are x + y + z, $\overline{x} + y + \overline{z}$, $\overline{x} + y + \overline{z}$, $\overline{x} + y + \overline{z}$, and $\overline{x} + \overline{y} + \overline{z}$.

Therefore, $F(x, y, z) = (x + y + z)(x + y + \overline{z})(\overline{x} + y + z)(\overline{x} + y + \overline{z})(\overline{x} + \overline{y} + \overline{z})$ is the conjunctive normal form for F.