Math 323 Introduction to Vectors

Definitions:

• Any quantity that can be represented by a single real number (along with a related unit of measurement) is called a **scalar quantity**, or, more simply, a **scalar**.

Examples: length, area, volume, speed, and mass are all scalars.

• Any quantitative concept that has both a **magnitude** and a **direction** is called a **vector** and is often represented visually by a directed line segment.

Examples: velocity and force are vectors.

• Two vectors that both have the same magnitude and direction are called **equivalent** vectors.

• We do not usually think of a vector as occupying a particular location, but when a vector is used to describe the motion of a particle from a point P in the plane to another point Q, we draw the vector \vec{PQ} as a directed line segment from P to Q.

• The **position vector** \vec{OA} associated with \vec{PQ} is the vector with the origin as its initial point and with terminal point A chosen so that \vec{OA} and \vec{PQ} are equivalent.

• In order to represent a vector \vec{a} in the plane in a sensible way, we usually compute the horizontal and vertical **components** of the vector \vec{a} . These correspond to the x and y coordinates of the point A (the terminal point of the position vector equivalent to \vec{a}).

• the magnitude or norm $\|\vec{a}\|$ of a 2-dimensional vector $\vec{a} = \langle a_1, a_2 \rangle$ is $\|\vec{a}\| = \|\langle a_1, a_2 \rangle\| = \sqrt{(a_1)^2 + (a_2)^2}$

Example: $\|\langle 3, -4 \rangle\| = \sqrt{(3)^2 + (-4)^2} = \sqrt{9 + 16} = \sqrt{25} = 5$

Addition of Vectors: $\langle a_1, a_2 \rangle + \langle b_1, b_2 \rangle = \langle a_1 + b_1, a_2 + b_2 \rangle$

Scalar Multiplication of Vectors: $c\langle a_1, a_2 \rangle = \langle ca_1, ca_2 \rangle$

Example: $3\langle 3, -4 \rangle - 2\langle -1, 5 \rangle = \langle 9, -12 \rangle + \langle 2, -10 \rangle = \langle 11, -22 \rangle$

The **zero vector** is the vector $\vec{0} = \langle 0, 0 \rangle$

The **negative** of a vector $\vec{a} = \langle a_1, a_2 \rangle$ is the vector $-\vec{a} = \langle -a_1, -a_2 \rangle$. Note that $-\vec{a}$ is a vector with the same magnitude and the opposite direction as \vec{a} .

Properties of Vectors:

 $\begin{array}{ll} ({\rm i}) \ \vec{a} + \vec{b} = \vec{b} + \vec{a} \\ ({\rm i}v) \ \vec{a} + -\vec{a} = \vec{0} \\ ({\rm vi}) \ (cd) \vec{a} = c(d\vec{a}) = d(c\vec{a}) \end{array} \begin{array}{ll} ({\rm ii}) \ \vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c} \\ ({\rm vi}) \ \vec{a} + -\vec{a} = \vec{0} \\ ({\rm vi}) \ c(\vec{a} + \vec{b}) = c\vec{a} + c\vec{b} \\ ({\rm vii}) \ (c + d) \vec{a} = c\vec{a} + d\vec{a} \end{array}$

Subtraction of Vectors: $\vec{a} - \vec{b} = \vec{a} + \vec{-b}$

Unit Vectors: A unit vector \vec{u} is a vector with norm 1. That is, $\|\vec{u}\| = 1$. Given any vector \vec{v} , $\frac{1}{\|\vec{v}\|}\vec{v}$ is a unit vector in the same direction as \vec{v} .