Review of Polynomial Functions

The Fundamental Theorem of Algebra: (Gauss - 1799)

A polynomial $P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ with $n \ge 1$ and $a_i \in \mathbb{C}$ has at least one zero in \mathbb{C} where \mathbb{C} is the set of complex numbers.

We will assume that all polynomials have real coefficients. That is, each $a_i \in \mathbb{R} \subset \mathbb{C}$.

The Remainder Theorem: If a polynomial $P^n(x)$ is divided by x - a until a constant remainder, R, is obtained, then $R = P_n(a)$.

Proof. $P_n(x) = (x-a)Q_{n-1}(x) + R$ for all x. Therefore, $P_n(a) = (a-a)Q_{n-1}(a) + R = R$. \Box

The Factor Theorem: Assume $P_n(x)$ is a polynomial. $P_n(p) = 0$ iff x - p is a factor.

Proof. (\Rightarrow) Dividing $P_n(x)$ by x - p yields $P_n(x) = (x - p)Q_{n-1}(x) + R$. Since $P_n(p) = 0$ by the Remainder Theorem, R = 0. Therefore, $P_n(x) = (x - p)Q_{n-1}(x)$. Hence x - p is a factor of $P_n(x)$. (\Leftarrow) If x - p is a factor of $P_n(x)$, then there is a function $Q_{n-1}(x)$ such that $P_n(x) = (x - p)Q_{n-1}(x)$. Thus $P_n(p) = (p - p)Q_{n-1}(p) = 0$. \Box

Corollary: If $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ where $n \ge 1$, then there exists unique constants (possibly complex) and positive integers m_1, m_2, \dots, m_k such that

$$\sum_{i=1}^{n} m_i = n \quad \text{and} \quad P(x) = a_n (x - x_1)^{m_1} (x - x_2)^{m_2} \cdots (x - x_k)^{m_k}.$$

Proof. From the Fundamental Theorem of Algebra and the Remainder Theorem applied to $P_n(x)$ there is an $x_1 \in \mathbb{C}$ and a polynomial $Q_{n-1}(x)$ such that $P_n(x_1) = 0$ and $P_n(x) = (x - x_1)Q_{n-1}(x)$. If $n - 1 \ge 1$, we repeat the process on $Q_{n-1}(x)$ and express $Q_{n-1}(x)$ as $Q_{n-1}(x) = (x - x_2)Q_{n-2}(x)$. Continuing inductively in this manner, there exist x_3, \ldots, x_n such that

$$P_n(x) = (x - x_1)(x - x_2) \cdots (x - x_n)Q_0(x)$$

Note $Q_0(x)$ is a constant function. In order for the product, on the right, to equal $P_n(x)$, it is necessary that $Q_0(x) = a_n$. Now gather the like factors and relabel, if necessary, we obtain the desired result. \Box

Theorem: Assume P and Q are polynomials of degree at most n. If $x_1, x_2, ..., x_k$ with k > n are distinct numbers with $P(x_i) = Q(x_i)$ for i = 1, 2, ..., k, then P(x) = Q(x) for all x.

Proof. Let D(x) = P(x) - Q(x). Then the degree of D(x) is less than or equal to n. Also, $D(x_i) = P(x_i) - Q(x_i) = 0$ for i = 1, 2, ..., k where k > n. The only polynomial of degree less than or equal to n with k > n zeros is the zero polynomial $D(x) \equiv 0$. Hence $P(x) \equiv Q(x)$. \Box

Theorem: If $P(x) = a_n x^n + \dots + a_1 x + a_0$ and $Q(x) = b_n x^n + \dots + a_1 x + a_0$ are polynomials of degree at most n and if $P_n(x_i) = Q_n(x_i)$ for distinct numbers x_1, \dots, x_k where k > n, then $a_i = b_i$ for all $i = 0, 1, 2, \dots, n$.

Proof. Let $D(x) = P_n(x) - Q_n(x) = (a_n - b_n)x^n + \dots + (a_0 - b_0)$. Note $D(x_i) = P(x_i) - Q(x_i) = 0$ for all $i = 1, \dots, k$ and D(x) is a polynomial of degree at most n with k > n zeros. By the previous theorem, this is not possible unless the degree of D is less than 1 or is nonexistent. Thus $D(x) \equiv 0$. Therefore, each $a_1 - b_i = 0$. Hence $a_i = b_i$ for all $i = 0, 1, \dots, n$. \Box

Theorem: Assume $P(x) = a_n x^n + \cdots + a_1 x + a_0$ is a polynomial with real coefficients. If a + bi is a root of P, then a - bi is also a root of P.

Corollary: Any odd degree polynomial with real coefficients has at least one real root.

The Rational Root Theorem: If $\frac{p}{q}$ is a rational root (simplified form) of the polynomial $P(x) = a_n x^n + \dots + a_1 x + a_0$ where each a_i is an integer, then p is a divisor of a_0 and q is a divisor of a_n .

Proof. Assume $\frac{p}{q}$ is a simplified rational root of the polynomial P(x). Thus

$$a_n \left(\frac{p}{q}\right)^n + a_{n-1} \left(\frac{p}{q}\right)^{n-1} + \dots + a_1 \left(\frac{p}{q}\right) + a_0 = 0$$

$$a_n \left(\frac{p^n}{q^n}\right) + a_{n-1} \left(\frac{p^{n-1}}{q^{n-1}}\right) + \dots + a_1 \left(\frac{p}{q}\right) + a_0 = 0$$

$$a_n p^n + a_{n-1} q p^{n-1} + \dots + a_1 q^{n-1} p + a_0 q^n = 0$$

$$a_n p^n + a_{n-1} q p^{n-1} + \dots + a_1 q^{n-1} p = -a_0 q^n.$$

Note that p divides the left-hand side and q divides the right-hand side. Since p has no factors in common with q, p divides a_0 . Rewriting as

$$a_{n-1}qp^{n-1} + \dots + a_1q^{n-1}p + a_0q^n = -a_np^n.$$

Note that q divides the left-hand side and p divides the right-hand side. Since q has no factors in common with p, q divides a_n . \Box