Math 450 Programming Assignment 2 Due: Friday October 29th

Let $f(x) = \ln x$

- 1. (a) Find the first five non-zero Taylor Polynomial Approximations of $f(x) = \ln x$ centered at c = 1.
 - (b) Use the polynomials $P_1(x)$, $P_2(x)$, $P_3(x)$, $P_4(x)$, and $P_5(x)$ you found above to approximate $\ln 2$. Find the absolute error of each approximation.
 - (c) Use maple to produce a plot containing f(x) along with $P_1(x)$, $P_2(x)$, $P_3(x)$, $P_4(x)$, and $P_5(x)$ [All of these functions should be displayed on the **same** plot]
- 2. (a) Given $x_0 = 1, x_1 = 1.4, x_2 = 1.8, x_3 = 2.2, x_4 = 2.6, x_5 = 3.0$ use whichever computational method you prefer, find the Lagrange Polynomials $P_{0,1}(x), P_{0,1,2}(x), P_{0,1,2,3}(x), P_{0,1,2,3,4}(x)$, and $P_{0,1,2,3,4,5}(x)$
 - (b) Use the polynomials $P_{0,1}(x)$, $P_{0,1,2}(x)$, $P_{0,1,2,3}(x)$, $P_{0,1,2,3,4}(x)$, and $P_{0,1,2,3,4,5}(x)$ you found above to approximate ln 2. Find the absolute error of each approximation.
 - (c) Use maple to produce a plot containing f(x) along with $P_{0,1}(x)$, $P_{0,1,2}(x)$, $P_{0,1,2,3}(x)$, $P_{0,1,2,3,4}(x)$, and $P_{0,1,2,3,4,5}(x)$ [All of these functions should be displayed on the **same** plot]
- 3. (a) Given $x_0 = 1, x_1 = 1.8, x_2 = 2.6$ use the fact that $f'(x) = \frac{1}{x}$ to compute $f'(x_0), f'(x_1)$, and $f'(x_2)$. Then, using any appropriate computational method, find a polynomial that agrees with both f(x) and f'(x) at x_0, x_1 , and x_2 .
 - (b) Use the polynomial you found above to approximate ln 2. Find the absolute error of the approximation.
 - (c) Use maple to produce a plot containing f(x) and the polynomial you found above.
- 4. (a) Given $x_0 = 1, x_1 = 1.8, x_2 = 2.6$ find the free spline agreeing with f(x) at these values.
 - (b) Given $x_0 = 1, x_1 = 1.8, x_2 = 2.6$ find the clamped spline agreeing with f(x) at these values.
 - (c) Use the piecewise defined functions you found above to approximate ln 2. Find the absolute error of each approximation.
 - (d) Use maple to produce a plot containing f(x) and the functions you found above.
- 5. (a) Which of the approximating functions you found above approximate $f(x) = \ln x$ most accurately at x = 2?
 - (b) Which of the approximating functions you found above approximate $f(x) = \ln x$ most accurately throughout the entire interval [1,3]? Justify your answer.