
Math 323
Exam 2 - Practice Problem Solutions

1. Given the vectors ~a = 〈2, 0,−1〉, ~b = 〈3,−2, 4〉, and ~c = 〈1,−4, 0〉, compute the following:

(a) A unit vector in the direction of ~c.

~u =
~c

‖~c‖ =
〈1,−4, 0〉√
1 + 16 + 0

= 〈 1√
17

,
−4√
17

, 0〉

(b) The angle between ~a and ~b (to the nearest tenth of a degree).

cos θ =
~a ·~b

‖~a‖‖~b‖
=

(2)(3) + (0)(−2) + (−1)(4)√
4 + 0 + 1

√
9 + 4 + 16

=
2√
5
√
29

.

Then θ = arccos

(

2√
5
√
29

)

≈ 80.4◦

(c) ~a×~b

~a×~b =

∣

∣

∣

∣

∣

∣

~i ~j ~k
2 0 −1
3 −2 4

∣

∣

∣

∣

∣

∣

=~i(0− 2)−~j(8 + 3) + ~k(−4 + 0) = −2~i− 11~j − 4~k

(d) The area of the triangle determined by ~a and ~b.

A =
1

2
‖~a×~b‖ =

1

2

√
4 + 121 + 16 =

√
141

2
≈ 5.937 square units.

(e) comp~b~a.

comp~b~a =
~a ·~b
‖b‖ =

2√
29

(f) A non-zero vector that is perpendicular to ~c.

We want 〈1,−4, 0〉 · 〈a, b, c〉 = 0, or a− 4b = 0.

One way to do this (there are infinitely many choices) is to take a = 4. Then b = 1 and c can be whatever we
choose, so ~v = 〈4, 1, 3〉 is a non-zero vector that is perpendicular to ~c (check that the dot product works out).

2. Given the vectors ~a = 〈1, 2, 0〉, ~b = 〈−1, 0, 2〉, and ~c = 〈0, 1, 1〉, compute the following:

(a) 2~a+ 3~b = 〈2, 4, 0〉+ 〈−3, 0, 6〉 = 〈−1, 4, 6〉
(b) ~a ·~b = (1)(−1) + (2)(0) + (0)(2) = −1.

(c) A unit vector in the direction of ~a.

~u =
~a

‖~a‖ =
〈1, 2, 0〉√
1 + 4

= 〈 1√
5
,
2√
5
, 0〉

(d) The component of ~c along ~a.

comp~a~c =
~c · ~a
‖a‖ =

(1)(0) + (2)(1) + (0)(1)√
5

=
2√
5

(e) The Volume of the parallelepiped determined by ~a,~b and ~c.

V =
(

~a×~b
)

·~c =

∣

∣

∣

∣

∣

∣

1 2 0
−1 0 2
0 1 1

∣

∣

∣

∣

∣

∣

= 1(0− 2)− 2(−1− 0)+ 0(0− 0) = −2+ 2+0 = 0 (what does this tell you about

these vectors?...)

(f) The angle between ~b and ~c

cos θ =
~b · ~c

‖~b‖‖~c‖
=

(0) + (0) + (2)√
1 + 0 + 4

√
0 + 1 + 1

=
2√
5
√
2
.

Then θ = arccos

(

2√
10

)

≈ 50.8◦



3. Decide whether each of the following are true or false. If true, explain why. If false, give a counterexample.

(a) If ~a ·~b = ~a · ~c, then ~b = ~c.

False. If we take ~a = ~0, then ~a ·~b = ~0 for any vector ~b. (in fact, it is still false when we assume all vectors are
non-zero. Can you show this?)

(b) If ~b = ~c then ~a ·~b = ~a · ~c.
True. Let ~a = 〈a1, a2, a3〉, ~b = 〈b1, b2, b3〉, and ~c = 〈c1, c2, c3〉 If ~b = ~c, then b1 = c1, b2 = c2, and b3 = c3. Then,

~a ·~b = a1b1 + a2b2 + a3b3 = a1c1 + a2c2 + a3c3 = ~a · ~c.
(c) ~a · ~a = ‖~a‖

False. Again let ~a = 〈a1, a2, a3〉. Then ~a · ~a = a2
1
+ a2

2
+ a2

3
= ‖~a‖2

(d) If ‖~a‖ > ‖~b‖, then ~a · ~c >~b · ~c
False. Let ~a = 〈0, 2〉, ~b = 〈1, 0〉, and ~c = 〈2, 0〉. Then ‖~a‖ = 2 > 1 = ‖~b‖, but ~a · ~c = 0 while ~b · ~c = 2

(e) If ‖~a‖ = ‖~b‖, then ~a = ~b

False. If ~a = 〈1, 0〉 and ~b = 〈0, 1〉, then ‖~a‖ = ‖~b‖ = 1, but clearly ~a 6= ~b.

4. Let P=(2,1,2) and Q=(3,1,1) be points.

(a) Find parametric equations for a line through these points.
−−→
PQ = 〈1, 0,−1〉, so the line (using P ) is given by:

ℓ :







x = 2 + t
y = 1 t ∈ R

z = 2− t

(b) Find the equation of a plane containing P,Q, and the origin.

Let R = (0, 0, 0). First, we find a normal vector to the plane:

−−→
PQ×−→

PR = 〈1, 0,−1〉 × 〈−2,−1,−2〉 =

∣

∣

∣

∣

∣

∣

~i ~j ~k
1 0 −1
−2 −1 −2

∣

∣

∣

∣

∣

∣

=~i(0− 1)−~j(−2− 2) + ~k(−1− 0) = −1~i+ 4~j − 1~k

Then the plane (using P ) has equation: −1(x− 2)+ 4(y− 1)− 1(z− 2) = 0, or −x+2+4y− 4− z+2 = 0, which
simplifies to give x− 4y + z = 0

5. Given the lines l1 : x = 3; y = 6− 2t; z = 3t+ 1 l2 : x = 1 + 2s; y = 3 + s; z = 2 + 2s:

(a) Show that the lines intersect by finding the coordinates of a point of intersection.

Equating the first pair of coordinate equations for these lines, 3 = 1 + 2s, or 2 = 2s, so s = 1

Then, looking at the third pair of equations with s = 1, 3t+ 1 = 2 + 2s = 4, so 3t = 3 or t = 1.

Checking this in the middle pair of equations, 6− 2(1) = 4 and 3+ 1 = 4. Hence this pair of lines intersect at the
point (3, 4, 4).

(b) Find a vector orthogonal to both lines.

The vectors associated with this pair of lines are ~v = 〈0,−2, 3〉 and ~v = 〈2, 1, 2〉 respectively.

To find a vector that is orthogonal (perpendicular) to both, we compute ~v × ~w =

∣

∣

∣

∣

∣

∣

~i ~j ~k
0 −2 3
2 1 2

∣

∣

∣

∣

∣

∣

= ~i(−4 − 3) −

~j(0− 6) + ~k(0 + 4) = −7~i+ 6~j + 4~k

(c) Find the equation of a plane containing both lines.

We need only find the equation for a plane with normal vector ~n = −7~i+6~j+4~k and containing the point P (3, 4, 4).

This is given by: −7(x− 3) + 6(y − 4) + 4(z − 4) = 0, or −7x+ 6y + 4z − 19 = 0

6. Given the two planes 2x+ y − z = 4 and 3x− y + z = 6

(a) Find normal vectors to each plane.

~n1 = 〈2, 1,−1〉 and ~n2 = 〈3,−1, 1〉



(b) Find parametric equations for the line of intersection of the two planes.

Solving each plane’s equation for z, we have z = 2x+ y − 4 and z = −3x+ y + 6.

Then 2x+ y − 4 = −3x+ y + 6, so 5x = 10, or x = 2.

Substituting this into our previous equation, z = 4 + y − 4, so z = y.

Thus, if we take z = t, we have the line of intersection: ℓ :







x = 2
y = t t ∈ R

z = t

7. Find both the parametric and symmetric equations for the line through the points P (3, 5, 7) and Q(−6, 2, 1).

To find parametric equations, We find
−−→
PQ = 〈−9,−3,−6〉. A slightly nicer vector in the opposite direction is: 〈3, 1, 2〉.

From this, using P , ℓ :







x = 3 + 3t
y = 5 + t t ∈ R

z = 7 + 2t

To put this in symmetric form, we solve each equation for t, yielding:
x− 3

3
= y − 5 =

z − 7

2

8. Find an equation of the plane through the point (1, 4,−5) and parallel to the plane defined by 2x− 5y + 7z = 12.

Since the planes are parallel, we use the same normal vector: ~n = 〈2,−5, 7〉.
Therefore, using P (1, 4,−5), we have a plane with equation: 2(x− 1) +−5(y − 4) + 7(z + 5) = 0.

9. Sketch at least 3 traces, then sketch and identify the surface given by each of the following equations:

Note: In the interest of getting these posted in a timely fashion, I am not including the graphs of the traces, although
you should include these on your exam solutions.

(a) y2 + z2 − x = 0

Traces:

If x = 0, we have y2 + z2 = 0, a point.

If x = k, we have y2 + z2 = k, which is a circle if k > 0, and is empty if k < 0.

If y = 0, we have z2 − x = 0, or x = z2, a parabola.

If z = 0, we have y2 − x = 0 or x = y2, a parabola.

Therefore, the figure is a paraboloid:

5.53.0-7.0 -4.5 0.5

z

-2.0 -2.0

y

0.5 3.0 -4.55.5 -7.0



(b) y2 + z2 = 1

This is a circular cylinder sitting over the unit circle in the yz-plane:

x

y

z

(c) 4x2 + 4y2 − 2z2 = 4.

Traces:

If x = 0, we have 4y2 − 2z2 = 4, or y2 − z2

2
= 1 a hyperbola.

If y = 0, we have 4x2 − 2z2 = 4, or x2 − z2

2
= 1, a hyperbola.

If z = 0, we have 4x2 + 4y2 = 4 or x2 + y2 = 1, a circle.

Therefore, the figure is a hyperboloid of 1 sheet:

-10-7
-10

-5-5

00
yz

-2

55

1010

3

(d) 4x2 + y2 − z2 = 0

Traces:

If x = 0, we have y2 − z2 = 0, or y2 = z2, so we have y = ±z, a pair of lines.

If y = 0, we have 4x2 − z2 = 0, or 4x2 = z2, so we have z = ±2x, a pair of lines.

If z = 0, we have 4x2 + y2 = 0, a point.

If z = k, we have 4x2 + y2 = k2, an ellipse.

Therefore, the figure is a cone:

10

x

-22

5 0 -5 -10

-12

-2

8

18

(e) y2 − 4 = 4x2 + z2

Traces:

If x = 0, we have y2 − 4 = z2, or y2 − z2 =, a hyperbola.

If y = 0, we have 4x2 + z2 = −4, which is empty.

If y = k, we have y2 − 4 = 4x2 + z2, which is a point if |y| = 2 and is an ellipse if |y| > 2

If z = 0, we have y2 − 4 = 4x2, or y2 − 4x2 = 4, a hyperbola.



Therefore, the figure is a hyperboloid of 2 sheets:
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(f) x2 − z = y2

Traces:

If x = 0, we have −z = y2, or z = −y2, a parabola opening downward.

If y = 0, we have x2 − z = 0, or z = x2, a parabola opening upward.

If z = 0, we have x2 = y2, or x = ±z, a pair of lines.

If z = k, we have x2 − y2 = k, which are hyperbolas whose vertices depend on the sign of k.

Therefore, the figure is a hyperbolic paraboloid (or “saddle”):
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10. Let ~r(t) = 〈t2, 4 + 3t, 4− 3t〉 be a vector valued function. Calculate the following:

(a) ~r′(t) = 〈2t, 3,−3〉
(b) ~r′′(t) = 〈2, 0, 0〉

(c)

∫

1

0

~r(t)dt = 〈
∫

1

0

t2 dt,

∫

1

0

4 + 3t dt,

∫

1

0

4− 3t dy〉 = 〈1
3
t3, 4t+

3

2
t2, 4t− 3

2
t〉
∣

∣

∣

∣

∣

1

0

= 〈1
3
,
11

2
,
5

2
〉

(d) the arc length of ~r(t) for 0 ≤ t ≤ 2. (Just set up the integral, you do not need to evaluate it).

L =

∫

2

0

√

[f ′(t)]
2
+ [g′(t)]

2
+ [h′(t)]

2
dt

=

∫

2

0

√

(2t)2 + 32 + 32 dt =

∫

2

0

√

4t2 + 18 dt

(e) Find the values of t for which ~r(t) and ~r′(t) are perpendicular.

We need ~r(t) · ~r′(t) = 0. That is, 〈t2, 4 + 3t, 4 − 3t〉 · 〈2t, 3,−3〉 = (t2)(2t) + (4 + 3t)(3) + (4 − 3t)(−3) =
2t3 + 12 + 9t− 12 + 9t = 2t3 + 18t = 0

Then 2t(t2 + 9) = 0, so either t = 0, or t2 = −9, which is impossible.

Therefore, t = 0 is the only solution.

11. Let ~r(t) = 〈3, 4cos(t), 4sin(t)〉.

(a) Sketch the curve traced out by the vector-valued function ~r(t). Indicate the orientation of the curve. What is
geometric shape of this curve?

Using algebra, y
4
= cos t and z

4
= sin t, so

y2

16
+

z2

16
= 1. Therefore, the curve is a circle or radius 4 in the plane

x = 3. (See graph)



x

y

z

(b) Find an equation in terms of t for s(t), the arc length of the curve traced out by ~r(t) as a function of t for t ≥ 0.

s(t) =

∫ t

0

√

02 + 16 cos2 x+ 16 sin2 x dx =

∫ t

0

√

16(cos2 x+ sin2 x) dx =

∫ t

0

√
16 dx =

∫ t

0

4 dx = 4x

∣

∣

∣

∣

∣

t

0

= 4t

(c) Find ~r′(t).

~r′(t) = 〈0,−4 sin t, 4 cos t〉
(d) Find an expression for the angle between the vectors ~r(t) and ~r′(t).

Recall that cos θ =
~r(t) · ~r′(t)

‖~r(t)‖‖~r′(t)‖
=

0− 16 sin t cos t+ 16 cos t sin t
√

9 + 16 cos2 t16 sin2 t
√

0 + 16 sin2 +16 cos2 t
=

0

5 + 4
= 0

Therefore, θ = arccos(0) = π
2
or 90◦ (hence they are perpendicular at all times).

(e) Find the force acting on a 5 kilogram object moving along the path given by ~r(t), in units of meters and seconds
(assume that no other forces are acting on this mass).

Recall that ~F = m~a. Also, ~a(t) = ~r′′(t) = 〈0,−4 cos t,−4 sin t〉.
Thus ~F (t) = 5〈0,−4 cos t,−4 sin t〉 = 〈0,−20 cos t,−20 sin t〉 (in Newtons).

(f) Find and draw the position and tangent vectors when t = π. Find 2 different vectors that are normal to r(π) and
r
′(π). Draw these vectors (carefully labeled) on the same axes (as the position and tangent vectors).

r(π) = 〈3,−4, 0〉 and r′(π) = 〈0, 0,−4〉
To find vectors normal to both of these, we take the cross product:

~r(π)× ~r′(π) =

∣

∣

∣

∣

∣

∣

~i ~j ~k
3 −4 0
0 0 −4

∣

∣

∣

∣

∣

∣

=~i(−16 + 0)−~j(12 + 0) + ~k(0 + 0) = −16~i− 12~j + 0~k

Another vector normal to both is: 16~i+ 12~j + 0~k

(the dotted line vectors represent the pair of vectors normal to both ~r(π) and ~r′(π))

r’(   )π
r(   )π

x

y

z

12. Let ~v(t) = 〈t2 − 2t, 4t− 3, t3〉.

(a) Find ~a(t)

~a(t) = 〈2t− 2, 4, 3t2〉



(b) If ~r(0) = 〈4,−1, 0〉, find ~r(t).

~r(t) =

∫

~r(t) dt = 〈1
3
t3 − t2, 2t2 − 3t,

1

4
t4〉+ ~C

Since ~r(0) = 〈4,−1, 0〉, ~C = 〈4,−1, 0〉 and hence ~r(t) = 〈 1
3
t3 − t2 + 4, 2t2 − 3t− 1, 1

4
t4〉

(c) Find the force acting on an object of mass 50kg with position function ~r(t) (in units of meters per second).

~F (t) = m~a(t) = 50〈2t− 2, 4, 3t2〉 = 〈100t− 100, 200, 150t2〉 (in Newtons).

(d) Find the speed of the object at time t = 2.

Since ~v(2) = 〈4− 4, 8− 3, 8〉 = 〈0, 5, 8〉, ‖~v(2)‖ =
√
0 + 25 + 64 =

√
89.

13. Suppose that a projectile is launched with initial velocity v0 = 100 ft/s from a height of 0 feet and at an angle of θ = π
6
.

(a) Assuming that the only force acting on the object is gravity, find the maximum altitude, horizontal range, and
speed at impact of this projectile.

Recall that the downward force of gravity is 32ft/s2. Since the only forces acting on this projectile are gravity
and its initial velocity, we can model this situation in 2 dimensions. We take ~j to be the unit vector in the upward
direction.

Then ~a(t) = −32~j, so, integrating: ~v(t) = 0~i−−32~j + ~C.

Now, using trigonometry, ~v(0) = 100 cos π
6
~i+ 100 sin π

6
~j = 50

√
3~i+ 50~j. Thus ~v(t) = 50

√
3~i+ (50− 32t)~j.

Since ~r(0) = ~0, ~r(t) = 50
√
3t~i+ (50t− 16t2)~j.

The maximum altitude occurs when the vertical component of ~v(t) is zero, that is, when 50 − 32t = 0, or when
t = 50

32
= 25

16
.

Therefore, the maximum altitude is found by looking at the vertical position at that time:

50
(

25

16

)

− 16
(

25

16

)2
= 39.0625 feet.

The horizontal range is found by first finding the time when the projectile hits the ground, and then finding the
horizontal component of position at that time:

50t− 16t2 = 0 when t = 0 or 50− 16t = 0. That is, when t = 50

16
= 25

8
.

Then the range is: 50
√
3
(

25

8

)

≈ 270.633 feet.

The speed at impact is found by looking at the magnitude of the velocity vector at the time of impact:

‖~v
(

25

8

)

‖ =

√

(

50
√
3
)2

+
(

50− 32
(

25

8

))2
=

√
7500 + 2500 = 100feet/sec.

(b) Find the landing point of this projectile if it weighs 1 pound, is launched due east, and there is a southerly wind
force of 4 pounds.

Because of the wind, we must move to a 3D coordinate system (let the positive x-axis be East and positive z be
Up). I worded this a bit clumsily, so just to clarify, my intention is that the wind is gusting as that its force is 4
times that of gravity (I know, this is not very realistic...)

~w = −4(32)~j and ~g = −1(32)~k, so ~a(t) = 0~i− 128~j − 32~k.

~v(0) = 100 cos π
6
~i+ 0~j + 100 sin π

6

~k = 50
√
3~i+ 0~j + 50~k.

Then ~v(t) = (0~i− 128t~j − 32t~k) + (50
√
3~i+ 0~j + 50~k) = 50

√
3~i− 128t~j + 50− 32t~k

As before, the projectile hits the ground after t = 25

8
seconds.

Notice that we set up our coordinate system so that ~r(0) = ~0. Therefore, ~r(t) = 50
√
3t~i− 64t2~j + (50t− 16t2)~k.

Thus the final position of the projectile is: ~r( 25
8
) = 〈50

√
3
(

25

8

)

,−64
(

25

8

)2
, 50

(

25

8

)

− 16
(

25

8

)2〉 ≈ 〈270.63,−625, 0〉
where the coordinates are in feet.


