
Math 323
Exam 3 - Version 1 Name:

Instructions: You will have 55 minutes to complete this exam. The credit given on each problem will be proportional to
the amount of correct work shown. Answers without supporting work will receive little credit.

1. Let z = f(x, y) = ln
(

4− x2 − y2
)

.

(a) (8 points) Sketch the domain of this function.

Notice that to be in the domain of this function, we need 4−x2 − y2 > 0, or 4 > x2 + y2. Thus the domain of this
function is the subset of the xy-plane strictly inside the circle given by the equation x2 + y2 = 4 (See the graph
below).
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(b) (8 points) Sketch contours for z = f(x, y) when z = 0 and when z = ln 3 on the same graph.

When z = 0, f(x, y) = ln
(

4− x2 − y2
)

= 0, so 4− x2 − y2 = e0 = 1. Thus x2 + y2 = 3.

When z = ln 3, f(x, y) = ln
(

4− x2 − y2
)

= ln 3, so 4− x2 − y2 = eln 3 = 3. Thus x2 + y2 = 1.
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2. (10 points) Show that lim
(x,y)→(0,0)

2xy

x2 + 2y2
does not exist.

Computing the limit along many pairs of paths would show that this limit does not exist. Here is one possible pair:

Along x = 0: lim
(0,y)→(0,0)

0

2y2
= 0.

Along x = y: lim
(x,x)→(0,0)

2x2

x2 + 2x2
= lim

(x,x)→(0,0)

2x2

3x2
= lim

(x,x)→(0,0)

2

3
=

2

3
.

Since the value of the limit along these two paths does not agree (0 6= 2
3 ), this limit does not exist.



3. Given the equation: sin (xyz) + 5x2y − 3xy2 − 2y3z + 8 = 0:

(a) (8 points) Use implicit differentiation to find
∂z

∂y

Recall that
∂z

∂y
= −Fy

Fz

.

Also, Fy = xz cos(xyz) + 5x2 − 6xy − 6y2z and Fz = xy cos(xyz)− 2y3.

Then
∂z

∂y
= −xz cos(xyz) + 5x2 − 6xy − 6y2z

xy cos(xyz)− 2y3
=

−xz cos(xyz)− 5x2 + 6xy + 6y2z

xy cos(xyz)− 2y3

(b) (8 points) Find an equation for the tangent plane to this surface at the point (1,−1, 0).

We first use the gradient to find a normal vector to the tangent plane:

∇F = 〈Fx, Fy, Fz〉 = 〈yz cos(xyz) + 10xy − 3y2, xz cos(xyz) + 5x2 − 6xy − 6y2z, xy cos(xyz)− 2y3〉

Then ∇F (1,−1, 0) = 〈0 + (−10)− 3, 0 + 5 + 6− 0,−1 cos(0)− (−2)〉 = 〈−13, 11, 1〉 = ~n

Using ~n = 〈−13, 11, 1〉 and the point P (1,−1, 0), the desired tangent plane has the following formula:

−13(x− 1) + 11(y + 1) + 1(z − 0) = 0. Simplifying gives −13x+ 13 + 11y + 11 + z = 0 or −13x+ 11y + z = −24

4. (10 points) Let w = f(x, y) = 7x3y2.
Find the differential dw and use it to approximate ∆w as the input changes from (1, 2) to (1.2, 1.9)

First, recall that dw = fx(x, y)dx+ fy(x, y)dy.

Here, fx(x, y) = 21x2y2, fy(x, y) = 14x3y, dx = ∆x = 0.2, dy = ∆y = −0.1, x = 1, and y = 2.

Then dw = 21x2y2dx+ 14x3ydy = 21(1)(2)2(0.2) + 14(1)3(2)(−0.1)

= (84)(0.2) + (28)(−0.1) = 16.8− 2.8 = 14.



5. (10 points) Suppose w = f(x, y) where x = 2st2 and y = s− 2t. Also suppose that fx(x, y) = 6xy and fy(x, y) = 3x2.

Find the value of
∂w

∂s
when s = 2 and t = −1.

Recall that ∂w
∂s

= ∂w
∂x

· ∂x
∂s

+ ∂w
∂y

· ∂y
∂s

= fx(x, y) · ∂x
∂s

+ fy(x, y) · ∂y
∂s

Furthermore, ∂x
∂s

= 2t2, ∂y
∂s

= 1, and we are given fx(x, y) = 6xy and fy(x, y) = 3x2.

Then ∂w
∂s

= (6xy)(2t2)+(3x2)(1). Notice that when s = 2 and t = −1, then x = 2(2)(−1)2 = 4, and y = 2−2(−1) = 4.

Substituting, we have ∂w
∂s

= 6(4)(4) · 2(−1)2 + 3(4)2(1) = 192 + 48 = 240.

6. (10 points) Given that z = f(x, y, z) = exyz find the derivative of f at the point (1, 1, 1) and in the direction of the
vector 〈−1, 3, 5〉.

Recall that D~uf(a, b, c) = ∇f(a, b, c) · ~u. Here, ∇f = 〈fx, fy, fz〉 = 〈yzexyz, xzexyz, xyexyz〉

Then ∇f(1, 1, 1) = 〈(1)e1, (1)e1, (1)e1〉 = 〈e, e, e〉.

Also, ~u =
~v

‖~v‖ =
〈−1, 3, 5〉√
1 + 9 + 25

=
〈−1, 3, 5〉√

35
= 〈 −1√

35
,

3√
35

,
5√
35

〉

Then D~uf(1, 1, 1) = ∇f(1, 1, 1) · ~u = 〈e, e, e〉 · 〈 −1√
35
, 3√

35
, 5√

35
〉 = −e√

35
+ 3e√

35
+ 5e√

35
= 7e√

35
= 7e

√
35

35 = e
√
35
5

7. (16 points) Find all the critical points of f(x, y) = 2x2 + y3 − x2y − 3y, and classify them using the Discriminant.

Since f(x, y) is continuous and has continuous first partials (it is a polynomial in two variables), its critical points occur
when fx = fy = 0.

Notice that fx(x, y) = 4x− 2xy and fy(x, y) = 3y2 − x2 − 3.

If fx = 0, then 4x− 2xy = 0, so 2x(2− y) = 0. Hence x = 0 or y = 2.

If x = 0, then if fy = 3y2− (0)2− 3 = 0, then 3y2 = 3, so y2 = 1. Thus y = ±1, giving critical points (0, 1) and (0,−1).

If y = 2, then if fy = 3(2)2 − x2 − 3 = 0, then 12− x2 − 3 = 0, so x2 = 9. Thus x = ±3, giving critical points (3, 2) and
(−3, 2).

Next, we classify these critical values using the discriminant. Recall that D(a, b) = fxx(a, b)fyy(a, b)− [fxy(a, b)]
2
.

Notice that fxx = 4− 2y, fyy = 6y, and fxy = −2x. Then we have the following:

D(0, 1) = (2)(6)− 02 = 12 > 0, and fxx(0, 1) = 2 > 0 so a local minimum occurs at (0, 1, f(0, 1)).

D(0,−1) = (6)(−6)− 02 = −36 < 0, so a saddle point occurs at (0,−1, f(0,−1)).

D(3, 2) = (0)(12)− (−6)2 = −36 < 0, so a saddle point occurs at (3, 2, f(3, 2)).

D(−3, 2) = (0)(12)− (6)2 = −36 < 0, so a saddle point occurs at (−3, 2, f(−3, 2)).



8. (16 points) Use Lagrange multipliers to find the point on the plane x+ 2y − 3z = 1 closest to the origin.

Notice that we are trying to minimize the distance of a point from the origin. Since it is equivalent (and more convenient)
to minimize the squared distance from the origin, we will take f(x, y, z) = x2 + y2 + z2 to be the function we are
trying to minimize.

Next, we see that the point in question must be a point on the plane x + 2y − 3z = 1. Therefore, we will take
g(x, y, z) = x+ 2y − 3z − 1 = 0 to be the constraint equation.

Using Lagrange’s method, we recall that solutions occur when ∇f = λ∇g and at points where the constraint equation
g(x, y) = 0 is satisfied.

We see that ∇f = 〈fx, fy, fz〉 = 〈2x, 2y, 2z, 〉 and ∇g = 〈gx, gy, gz〉 = 〈1, 2,−3〉

Then we have 2x = λ 2y = 2λ and 2z = −3λ. Then λ = 2x = y = − 2
3z.

But then y = 2x, and 2x = − 2
3z, or z = − 3

2 (2x) = −3x.

Substituting into the constraint equation gives x+ 2(2x)− 3(−3x) = 1, or x+ 4x+ 9x = 1.

Then 14x = 1, so x = 1
14 . Then y = 2

14 = 1
7 , and z = − 3

14 .

We know this this solution must be a minimum, since points on any given plane can be chosen so that they are arbitrarily

far from the origin. Hence the closest point to the origin on the plane x+ 2y − 3z = 1 is the point

(

1

14
,
1

7
,− 3

14

)


