
Math 323
Exam 4 - Version 1 Name:

Instructions: You will have 55 minutes to complete this exam. The credit given on each problem will be proportional to
the amount of correct work shown. Answers without supporting work will receive little credit.

1. Given the integral
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∫ 4

√
x
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4 + y3
dy dx

(a) (6 points) Graph the region of integration R.

Using the bounds on the integral given, we have 0 ≤ x ≤ 2, and
√
x ≤ y ≤ 4. Then the graph of the region of

integration R is as follows:
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(b) (12 points) Evaluate the integral by changing the order of integration.

Note: The typo on this problem was reversing the constants in the upper limits of the integrals above (why does
reversing these work out better?)

Based on the region as originally defined, we must use two separate integral in order to describe the desired integral
(notice the points of intersection noted in the graph above). The first integral can be easily evaluated. The second
is quite challenging. Here is as much of the problem as I expected you to work:
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Evaluating the first integral gives:
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√
2)− ln 4.

The second integral is quite challenging to evaluate (try Maple...)

2. (12 points) Let a volume integral be defined by V =

∫ 1

0

∫ 2−2z

0

∫ 4−2y−4z

0

dx dy dz

Express this integral in rectangular coordinates in the order dz dy dx.

Notice that using the boundaries above, we have 0 ≤ x ≤ 4− 2y − 4z, 0 ≤ y ≤ 2− 2z, and 0 ≤ z ≤ 1.

Considering the first variable, the “top” surface is the planar equation x = 4− 2y − 4z. In the yz-plane, this has trace
2y + 4z = 4 or y = 2 − 2z, so we see that the solid of integration is the tetrahedron in the first octant formed by the
plane above and the coordinate planes.

From this, we first solve the original plane equation for z, giving 4z = 4− x− 2y, or z = 1− x
4
− y

2
. The trace in the

xy-plane is x+ 2y = 4, or, solving for y, y = 2− x
2
. Finally, the x intercept is 4, so we have the following integral:
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1 dz dy dx



3. A lamina occupies the plane region R bounded by r = 2− cos θ, for 0 ≤ θ ≤ π and has density function δ(x, y) = y in
kg/cm2.

(a) (15 points) Find the mass if this lamina.

We begin by noting that this integral is best evaluated in polar form, so we translate δ(x, y) = y into δ(r, θ) = r sin θ.
Next, we graph the polar region.
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From this, we have the following integral:

∫ π
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r sin θ · r dr dθ =
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∣
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(b) (5 points) Set up an integral representing the moment of this lamina with respect to the y-axis. You DO NOT
need to evaluate this integral.

Recall that My =

∫∫

R

x · δ(x, y) dA. Then, reverting to polar coordinates to get a simpler integral, we have

My =

∫ π

0

∫ 2−cos θ

0

r cos θ · r2 sin θ dr dθ =

∫ π

0

∫ 2−cos θ

0

r3 cos θ sin θ dr dθ

4. (12 points) Given the triple integral

∫ 2π

0

∫ π

4

0

∫ 4

1

ρ2 sinφ dρ dφ dθ, sketch the solid Q which serves and the region of

integration.

Since we have bounds 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π
4
, and 1 ≤ ρ ≤ 4, the region integration is bounded inside by the sphere of

radius 1 centered at the origin, is bounded outside by the sphere of radius 4 centered at the origin, and is within a 45◦

cone that would normally sit with its cone point at the origin. The graph of this region is as follows:
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5. Let Q be the region between z = 9 and z =
√

x2 + y2, and suppose f(x, y, z) = xz.

First notice that z = 9 is a plane parallel to the xy-plane and that z =
√

x2 + y2 is a 45◦ cone. The intersection of

these surfaces is given by 9 =
√

x2 + y2 or x2+y2 = 81, a circle of radius 9, which serves as the boundary for the region
in the plane when integrating in either cylindrical or rectangular coordinates. The graph of this solid is as follows:
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(a) (14 points) Set up a triple integral which gives I =

∫∫∫

Q

f(x, y, z) dV in rectangular coordinates.

DO NOT EVALUATE THE INTEGRAL.

Applying the discussion above and the graph of the region, we see that the integration order dz dy dx is probably
the simplest to use (actually, the order of x and y do not matter)

We then have
√

x2 + y2 ≤ z ≤ 9, −
√
81− x2 ≤ y ≤

√
81− x2, and −9 ≤ x ≤ 9. Therefore, an integral in

rectangular coordinates representing I is:

∫ 9

−9

∫

√
81−x2

−
√
81−x2

∫ 9

√
x2+y2

xz dz dy dx

(b) (14 points) Set up a triple integral which gives I =

∫∫∫

Q

f(x, y, z) dV in cylindrical coordinates.

DO NOT EVALUATE THE INTEGRAL.

Translating the surfaces and region into cylindrical form, we have:
√

x2 + y2 =
√
r2 = r, so the limits of integration

will be given by r ≤ z ≤ 9, 0 ≤ r ≤ 9, and 0 ≤ θ ≤ 2π. We also must translate the integrand into cylindrical
coordinates. Since x = r cos θ, we have the following cylindrical integral representing I:

∫ 2π

0

∫ 9

0

∫ 9

r

r cos θ · z · r dz dr dθ =

∫ 2π

0

∫ 9

0

∫ 9

r

r2(cos θ)z dz dr dθ

(c) (14 points) Set up a triple integral which gives I =

∫∫∫

Q

f(x, y, z) dV in spherical coordinates.

DO NOT EVALUATE THE INTEGRAL.

To translate into spherical coordinates, we notice that the top boundary z = 9 can be rewritten as z = ρ cosφ = 9,
or ρ = 9

cosφ
= 9 secφ. Also notice that the inner boundary is ρ = 0 since the cone sits on top of the origin.

Therefore, we have the following bounds: 0 ≤ ρ ≤ 9 secφ, 0 ≤ φ ≤ π
4
, and 0 ≤ θ ≤ 2π.

We also must convert the integrand using x = ρ sinφ cos θ and z = ρ cosφ and the spherical differential dV =
ρ2 sinφ. Hence a spherical integral representing I is given by:

∫ 2π

0

∫ π

4

0

∫ 9 secφ

0

ρ4 sin2 φ cosφ cos θ dρ dφ dθ


