
Math 323
Exam 4 - Version 2 Name:

Instructions: You will have 55 minutes to complete this exam. The credit given on each problem will be proportional to
the amount of correct work shown. Answers without supporting work will receive little credit.

1. Given the integral

∫ 4

0

∫ 2

√
y

cos
(

x3
)

dx dy

(a) (6 points) Graph the region of integration R.

Using the bounds on the integral given, we have 0 ≤ y ≤ 4, and
√
y ≤ x ≤ 2. Then the graph of the region of

integration R is as follows:
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R
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(b) (12 points) Evaluate the integral by changing the order of integration.

From the graph above, if we switch the order of integration, we have bounds 0 ≤ y ≤ x2 and 0 ≤ x ≤ 2. Then the
integral is:

∫ 2

0

∫ x2

0

cos(x3) dy dx =

∫ 2

0

y · cos(x3)
∣

∣

∣
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0
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0

x2 cos(x3)− 0 dx =
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3
sin(x3)

∣

∣

∣
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3
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3
sin(0) =
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2. (12 points) Let a volume integral be defined by V =

∫ 2

0

∫ 4−2y

0

∫ 1− x

4
− y

2

0

dz dx dy

Express this integral in rectangular coordinates in the order dy dx dz.

Notice that using the boundaries above, we have 0 ≤ x ≤ 4− 2y − 4z, 0 ≤ y ≤ 2− 2z, and 0 ≤ z ≤ 1.

Considering the first variable, the “top” surface is the planar equation z = 1 − x
4
− y

2
, or 4z = 4 − x − 2y. In the

xy-plane, this has trace x+ 2y = 4 or x = 4− 2y, so we see that the solid of integration is the tetrahedron in the first
octant formed by the plane above and the coordinate planes.

From this, we first solve the original plane equation for y, giving 2y = 4− x− 4z, or y = 2− x
2
− 2z. The trace in the

xz-plane is x+ 4z = 4, or, solving for x, x = 4− 4z. Finally, the z intercept is 1, so we have the following integral:

∫ 1

0

∫ 4−4z

0

∫ 2− x

2
−2z

0

1 dy dx dz



3. A lamina occupies the plane region R bounded by x2+y2 = 1, and has density function δ(x, y) = e−
√

x2+y2

in kg/cm2.
.

(a) (15 points) Find the mass if this lamina.

We begin by noting that this integral is best evaluated in polar form, so we translate δ(x, y) = e−
√

x2+y2

into
δ(r, θ) = e−r. Next, we see that the polar region is the disk or radius 1 in the plane.

From this, we have the following integral:

∫ 2π

0

∫ 1

0

e−r · r dr dθ.

From the form of this integral, we see that we will need to use integration by parts in order to evaluate the inner
integral. To do this, we take u = r and dv = e−r dr. Then du = 1 dr and v = −e−r. Then we have the integral:

∫ 2π

0

∫ 1

0

e−r · r sin θ dr dθ =

∫ 2π

0

−re−r
∣

∣

∣

1

0

+

∫ 2π

0

∫ 1

0

e−r dr dθ =

∫ 2π

0

−re−r − e−r
∣

∣

∣

1

0

dθ

=

∫ 2π

0

−1

e
+

−1

e
− (0− 1) dθ =

∫ 2π

0

1−
2

e
dθ =

(

1−
2

e

)

∣

∣

∣

2π

0

= 2π

(

1−
2

e

)

≈ 1.66 kg.

(b) (5 points) Set up an integral representing the moment of this lamina with respect to the y-axis. You DO NOT
need to evaluate this integral.

Recall that My =

∫∫

R

x · δ(x, y) dA. Then, reverting to polar coordinates to get a simpler integral, we have

My =

∫ 2π

0

∫ 1

0

r cos θ · e−r · r dr dθ =

∫ 2π

0

∫ 1

0

r2e−r cos θ dr dθ

4. (12 points) Given the triple integral

∫ 2π

0

∫ π

4

0

∫ 4 secφ

1

ρ2 sinφ dρ dφ dθ, sketch the solid Q which serves and the region of

integration.

Since we have bounds 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π
4
, and 1 ≤ ρ ≤ 4 secφ, the region integration is bounded inside by the

sphere of radius 1 centered at the origin. It is bounded outside by ρ = 4 secφ, which is equivalent to the plane z = 4.
The region is also within a 45◦ cone that would normally sit with its cone point at the origin. The graph of this region
is as follows:
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5. Let Q be the region between z =
√

18− x2 − y2 and z =
√

x2 + y2, and suppose f(x, y, z) = yz.

First notice that z =
√

18− x2 − y2 is a hemisphere of radius
√
18 = 3

√
2 and that z =

√

x2 + y2 is a 45◦ cone. The

intersection of these surfaces is given by
√

18− x2 − y2 =
√

x2 + y2 or 18− x2 + y2 = x2 + y2. Then 2x2 + 2y2 = 18,
or x2 = y2 = 9, a circle of radius 3, which serves as the boundary for the region in the plane when integrating in either
cylindrical or rectangular coordinates. The graph of this solid is as follows:

R
x
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(a) (14 points) Set up a triple integral which gives I =

∫∫∫

Q

f(x, y, z) dV in rectangular coordinates.

DO NOT EVALUATE THE INTEGRAL.

Applying the discussion above and the graph of the region, we see that the integration order dz dy dx is probably
the simplest to use (actually, the order of x and y do not matter)

We then have
√

x2 + y2 ≤ z ≤
√

18− x2 − y2, −
√
9− x2 ≤ y ≤

√
9− x2, and −3 ≤ x ≤ 3. Therefore, an integral

in rectangular coordinates representing I is:

∫ 3

−3

∫

√
9−x2

−
√
9−x2

∫

√
18−x2−y2

√
x2+y2

yz dz dy dx

(b) (14 points) Set up a triple integral which gives I =

∫∫∫

Q

f(x, y, z) dV in cylindrical coordinates.

DO NOT EVALUATE THE INTEGRAL.

Translating the surfaces and region into cylindrical form, we have:
√

x2 + y2 =
√
r2 = r and

√

18− x2 − y2 =√
18− r2, so the limits of integration will be given by r ≤ z ≤

√
18− r2, 0 ≤ r ≤ 3, and 0 ≤ θ ≤ 2π. We also must

translate the integrand into cylindrical coordinates. Since y = r sin θ, we have the following cylindrical integral
representing I:

∫ 2π

0

∫ 3

0

∫

√
18−r2

r

r sin θ · z · r dz dr dθ =

∫ 2π

0

∫ 3

0

∫

√
18−r2

r

r2(sin θ)z dz dr dθ

(c) (14 points) Set up a triple integral which gives I =

∫∫∫

Q

f(x, y, z) dV in spherical coordinates.

DO NOT EVALUATE THE INTEGRAL.

To translate into spherical coordinates, we notice that the top boundary can be rewritten as ρ =
√
18 = 3

√
2. Also

notice that the inner boundary is ρ = 0 since the cone sits on top of the origin. Therefore, we have the following
bounds: 0 ≤ ρ ≤ 3

√
2, 0 ≤ φ ≤ π

4
, and 0 ≤ θ ≤ 2π.

We also must convert the integrand using y = ρ sinφ sin θ and z = ρ cosφ and the spherical differential dV =
ρ2 sinφ. Hence a spherical integral representing I is given by:

∫ 2π

0

∫ π

4

0

∫ 3
√
2

0

ρ4 sin2 φ cosφ sin θ dρ dφ dθ


