Math 310 Exam 2 - Practice Problems

- 1. Prove that there is an integer m such that  $m^3 > 10^{10}$ . Is your proof constructive or non-constructive?
- 2. Prove that given any two rational numbers p < q, there is a rational number r with p < r < q.
- 3. Prove that given a non-negative integer n, there is a unique non-negative integer m such that  $m^2 \leq n < (m+1)^2$
- 4. Prove or disprove: Every non-negative integer can be written as the sum of at most 3 perfect squares.
- 5. Formulate a conjecture about the final two digits of the square of any integer. Then prove your conjecture.
- 6. For each of the following, determine whether the statement is True or False.
  - (a)  $\emptyset \subseteq \{a, b, c, d\}$ (d)  $\emptyset \subseteq \{a, b, \emptyset\}$ (g)  $1 \in \{0, \{1\}, \{0, 1\}\}$ (b)  $\emptyset \in \{a, b, c, d\}$ (e)  $\{a, b\} \subset \{a, b\}$ (h)  $\{0, 1\} \in \{0, \{1\}, \{0, 1\}\}$ (c)  $\emptyset \in \{a, b, \emptyset\}$ (f)  $0 \in \{0, \{1\}, \{0, 1\}\}$ (i)  $\{0, 1\} \subset \{0, \{1\}, \{0, 1\}\}$
- 7. Given the set  $B = \{a, b, \{a, b\}\}$ 
  - (a) Find |B|. (b) Find  $\mathcal{P}(B)$
- 8. Given that  $A = \{1, 2, 3\}$  and  $B = \{a, b, c, d, e, f\}$ 
  - (a) List the elements in  $A \times A$ .
  - (b) How many elements are in  $A \times B$ ?
  - (c) How many elements are in  $A \times (B \times B)$ ?
- 9. Find the set of all elements that make the predicate  $Q(x) : x^2 < x$  true (where the domain of x is all real numbers).
- 10. Given that  $A = \{0, 2, 4, 6, 8, 10, 12\}$ ,  $B = \{0, 2, 3, 5, 7, 11, 12\}$  and  $C = \{1, 2, 3, 4, 6, 7, 8, 9\}$  are all subsets of the universal set  $U = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$ , find each of the following:
  - (a) A B(c)  $A \cap B$ (e)  $A (\overline{B} \oplus C)$ (b)  $\overline{A}$ (d)  $A \cup (B \cap C)$ (f)  $(A \cap C) \cup (B \overline{A})$

11. Draw Venn Diagrams representing each of the following sets:

- (a) A B(b)  $B - \overline{A}$ (c)  $(A \cup C) \cap B$ (d)  $\overline{A \cup B \cup C}$ (e)  $A - (B \cup C)$ (f)  $(A \cap B) - \overline{C}$
- 12. Use a membership table to show that  $(B A) \cup (C A) = (B \cup C) A$ .
- 13. Use a 2-column proof to verify the set identity:  $A \cup (A \cap B) = A$ .
- 14. Use a paragraph (double containment) proof to show that  $A B = A \cap \overline{B}$ .
- 15. For each of the following, either prove the statement or show that it is false using a counterexample.
  - (a) (A B) C = A (B C)
  - (b)  $A \oplus (B \oplus C) = (A \oplus B) \oplus C$
  - (c)  $A \cap (B C) = (A \cap B) (A \cap C)$

16. Consider the function f(x) = |x|

- (a) Suppose that the domain of this function is  $\mathbb{R}$  and the co-domain is  $\mathbb{R}$ . Find the range of f. Is f 1-1? Is f onto? Justify your answers.
- (b) Suppose that the domain of this function is  $\mathbb{N}$  and the co-domain is  $\mathbb{N}$ . Find the range of f. Is f 1-1? Is f onto? Justify your answers.
- (c) Suppose  $S = \{-2, -1, 0, 1, 2\}$ . Find f(S) (the image of the set S under f). Find  $f^{-1}(S)$  (the preimage of the set S under f).

- 17. For each of the following functions, determine whether f is a one-to-one. Also determine whether f is onto. Justify your answers.
  - (a)  $f : \mathbb{R} \to \mathbb{R}, f(x) = x^3 x$
  - (b)  $f : \mathbb{R}^+ \to \mathbb{R}^+$   $f(x) = x^2$
  - (c)  $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} f(m, n) = m^2 n$
  - (d)  $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} f(m, n) = m^2 n^2$

18. Graph the following functions. Assume that the domain is  $\mathbb{R}$ .

- (a)  $f(x) = \lceil x \rceil 1$
- (b)  $g(x) = \lfloor \frac{x-1}{2} \rfloor$
- (c)  $h(x) = \lceil x \rceil \lfloor x + 1 \rfloor$
- 19. Prove or Disprove: Suppose  $f: B \to C$  and  $g: A \to B$ . If f is one-to-one and g is onto, then  $f \circ g$  is one to one.
- 20. Prove or Disprove: Suppose  $f: B \to C$  and  $g: A \to B$ . If f is one-to-one and g is onto, then  $f \circ g$  is onto.
- 21. Prove that  $n^5 n$  is divisible by 5 for any non-negative integer n.

22. Prove that for  $r \in \mathbb{R}$ ,  $r \neq 1$  and for all integers n,  $\sum_{j=0}^{n} r^j = \frac{r^{n+1}-1}{r-1}$ 

- 23. Prove that for all  $n \ge 2$ ,  $\sum_{k=1}^{n} \frac{1}{k^2} < 2 \frac{1}{n}$
- 24. Prove that  $n! < n^n$  whenever n > 1.
- 25. Prove that for all n,  $\sum_{k=1}^{n} \frac{1}{(2k-1)(2k+1)} = \frac{n}{2n+1}$
- 26. Suppose that  $f(x) = e^x$  and  $g(x) = xe^x$ . Use induction and the product rule to show that  $g^{(n)}(x) = (x+n)e^x$  for all  $n \ge 1$ .
- 27. Given the relation  $R = \{(1, 1), (1, 3), (1, 4), (2, 2), (3, 1), (3, 4), (4, 1), (4, 3)\}$  on the set  $A = \{1, 2, 3, 4\}$ :
  - (a) Determine whether or not R is reflexive.
  - (b) Determine whether or not R is irreflexive.
  - (c) Determine whether or not R is symmetric.
- (d) Determine whether or not R is antisymmetric.
- (e) Determine whether or not R is transitive.

28. Given the relation  $S = \{(1,1), (1,3), (2,1), (2,2), (2,3), (3,3), (4,4)\}$  on the set  $A = \{1,2,3,4\}$ :

- (a) Determine whether or not S is reflexive.
- (b) Determine whether or not R is irreflexive.(c) Determine whether or not R is symmetric.
- (e) Determine whether or not R is transitive.

(d) Determine whether or not R is antisymmetric.

29. Suppose that R and S are symmetric relations on a non-empty set A. Prove or disprove each of these statements:

(a)  $R \cup S$  is symmetric.

- (b)  $R \cap S$  is symmetric.
- (c) R S is symmetric.
- (d)  $R \oplus S$  is symmetric.
- (e)  $S \circ R$  is symmetric.