Karnaugh Maps:

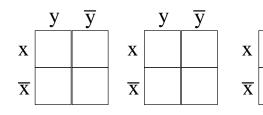
A Karnaugh Map is a diagrammatical method for finding the minimization for a Boolean expression in disjunctive normal from. To use a K-map to simplify an expression, we put a 1 in the square in the diagram corresponding to each minterm represented in the Boolean expression. We circle all blocks in the diagram. Blocks are collections of 2^k adjacent cells for some k. A minimization for the given Boolean expression is found by choosing a collection of maximal blocks which cover the 1s in the diagram. A minimal expression is found by writing out the terms associated with the collection of blocks chosen.

Examples:

1.
$$x\overline{y} + \overline{x}\overline{y}$$

2.
$$xy + \overline{x}\overline{y}$$

2.
$$xy + \overline{x}\overline{y}$$
 3. $xy + \overline{x}y + \overline{x}\overline{y}$



4.
$$xy\overline{z} + x\overline{y}\,\overline{z} + \overline{x}yz + \overline{x}\,\overline{y}\,\overline{z}$$
 5. $x\overline{y}z + x\overline{y}\,\overline{z} + \overline{x}yz + \overline{x}\,\overline{y}\,z + \overline{x}\,\overline{y}\,z$

	yz	yz	yz	$\overline{y}z$
X				
$\overline{\mathbf{X}}$				

	yz	yz	y z	$\overline{y}z$
X				
$\overline{\mathbf{X}}$				

$$6. \ xyz + xy\overline{z} + x\overline{y}z + x\overline{y}\,\overline{z} + \overline{x}yz + \overline{x}\,\overline{y}z + \overline{x}\,\overline{y}\,\overline{z} \quad 7. \ xy\overline{z} + x\overline{y}\,\overline{z} + \overline{x}\,\overline{y}\,z + \overline{x}\,\overline{y}\,\overline{z}$$

	yz	yZ	yz	<u>y</u> z
X				
$\overline{\mathbf{X}}$				

	yz	$y\overline{z}$	<u>yz</u>	$\overline{y}z$
X				
X				

8. $wx\overline{yz} + w\overline{x}yz + w\overline{x}y\overline{z} + w\overline{x}y\overline{z} + \overline{w}x\overline{y}\overline{z} + \overline{w}x\overline{y}\overline{z} + \overline{w}\overline{x}y\overline{z} + \overline{w}\overline{x}y\overline{z}$

	yz	yz	<u>yz</u>	<u>y</u> z
WX				
$w\overline{\boldsymbol{x}}$				
$\overline{W}\overline{X}$				
$\overline{\mathbf{W}}\mathbf{X}$				

Method 2: The Quine-McClusky Method

K-Maps become very difficult to draw and interpret once we have more than 4-5 variables in our expression. The Quine-McClusky method is an algorithmic procedure that automates the process of finding a minimization of a Boolean Expression. The algorithm proceeds as follows:

- 1. List each minterm in the given Boolean expression one at a time and convert each minterm to a binary string.
- 2. Find all pairs of minterms that can be combined into a shorter term (the binary strings for these terms will differ in exactly one position). List these pairs and their strings in a new column.
- 3. Apply the same process in your new column of shortened strings.
- 4. Continue this process until all possible terms have been combined. This process results in a list of terms of various length.
- 5. Work backwards from the shortest terms you found up to the largest terms choosing a minimal collection of terms to generate all of the original minterms (it may be useful to create a separate a table for this step.

Examples: