Definitions:

- A relation R on a set S is a **partial ordering** or **partial order** if it is reflexive, antisymmetric, and transitive.
- A set S together with a partial ordering R is called a **partial ordered set** or **poset**, denoted by (S, R) or (S, \preceq) .
- Members of the set S are called **elements** of the poset.
- The elements a and b of a poset (S, \preceq) are called **comparable** if either $a \preceq b$ or $b \preceq a$. If neither of these occur for a pair a and b, then we say that these elements are **incomparable**.
- If (S, \preceq) is a poset and every pair of elements in S are comparable, then we say that S is a **totally ordered set** and we say that \preceq is a **total order**.
- If S is a totally ordered set with total ordering \leq in which every non-empty set has a least element, then we say that (S, \leq) is a well-ordered set.

Examples:

- 1. (\mathbb{R}, \geq) is a poset.
- 2. (\mathbb{Z}, \leq) is a poset.
- 3. $(\mathbb{Z}, |)$ is a poset.
- 4. Given a set A, $(\mathcal{P}(A), \subseteq)$ is a poset.
- 5. Claim: (\mathbb{Z}^+, \leq) is a well-ordered set.
- 6. Claim: (\mathbb{R}, \leq) is not a well-ordered set.
- 7. Extra Credit: Find an order \leq on \mathbb{R} that makes (\mathbb{R}, \leq) a well ordered set.

Lexicographic Ordering: Given two posets (A_1, \preceq_1) and (A_2, \preceq_2) , the **lexicographic ordering** \preceq on $A_1 \times A_2$ is defined as follows:

Given two elements (a_1, a_2) and (b_1, b_2) , the pair $(a_1, a_2) \preceq (b_1, b_2)$ if either $a_1 \preceq_1 b_1$ or $a_1 = b_1$ and $a_2 \preceq_2 b_2$. Note that $(a_1, a_2) = (b_1, b_2)$ if $a_1 = b_1$ and $a_2 = b_2$.

Example: Consider $(\mathbb{Z}^+ \times \mathbb{Z}^+, \preceq)$ where we use the standard \leq ordering on each component.

- (a) Notice that $(3, 17) \leq (4, 11)$ since $3 \leq 4$.
- (b) Similarly, $(5, 2) \leq (5, 7)$ since 5 = 5 and $2 \leq 7$.

Note: We can expand this definition to *n*-tuples of elements by applying the same process of comparing the elements in coordinates working from left to right. For example, $(2, 12, 35) \leq (3, 1, 4)$, $(3, 2, 17, 11) \leq (3, 5, 8, 1)$, and $(2, 5, 8, 11, 17) \leq (2, 5, 8, 11, 22)$ in the lexicographic orderings induced by using \leq in each component. We can get more exotic lexicographic orderings by applying different orderings in one or more of the components.

More Definitions:

- An element a in a poset (S, \preceq) is **maximal** if these is no element b such that $a \prec b$. Similarly, an element a in a poset (S, \preceq) is **minimal** if these is no element b such that $b \prec a$.
- An element a in a poset (S, \preceq) is the greatest element if $b \preceq a$ for all $b \in S$. Similarly, an element a is the least element if $a \preceq b$ for all $b \in S$
- Given a poset (S, \preceq) and a subset $A \subseteq S$, an element u is an **upper bound** for A if $a \preceq u$ for all $a \in A$. An element x is the **least upper bound** of A if x is an upper bound of A, and given any upper bound u of $A, x \preceq u$.
- Given a poset (S, \preceq) and a subset $A \subseteq S$, an element l is a **lower bound** for A if $l \preceq a$ for all $a \in A$. An element y is the **greatest lower bound** of A if y is a lower bound of A, and given any lower bound l of $A, l \preceq y$.
- A poset in which every pair of elements has both a least upper bound and a greatest lower bound is called a lattice.

Example: