Cubic Splines

Definition: Suppose f(x) is a function defined on [a,b]. Given n+1 points $a = x_0 < x_1 < ... < x_{n-1} < x_n = b$,

a cubic spline interpolate S for f(x) is a function that satisfies the following conditions:

(1) S(x) is a piecewise defined cubic polynomial with $S(x) = S_j(x)$, a cubic polynomial, on the interval $[x_i, x_{i+1}]$ for each j = 0, 1, ..., n.

(2) $S(x_j) = f(x_j)$ for each j = 0, 1, ..., n.

(3) $S_{j+1}(x_{j+1}) = S_j(x_{j+1})$ for each j = 0, 1, ..., n-2.

(4) $S'_{j+1}(x_{j+1}) = S'_{j}(x_{j+1})$ for each j = 0, 1, ..., n-2.

(5) $S''_{i+1}(x_{i+1}) = S''_{i}(x_{i+1})$ for each j = 0, 1, ..., n-2.

(6) One of the following two boundary conditions hold:

(a) The "Natural" or "free" boundary condition: $S " (x_0) = S " (x_n) = 0$.

(b) The "Clamped" boundary condition: $S'(x_0) = f'(x_0)$ and $S'(x_n) = f'(x_n)$.

A spline satisfying 1-5 and 6a is called a **natural spline**. A spline satisfying 1-5 and 6b is called a **clamped spline**.

Example: Suppose we have that f(0) = 2, f(1) = 4, and f(3) = 5.

The definiton of a cubic spline give the following equations:

- (1) Let $S_0(x) = 2 + b_0 x + c_0 x^2 + d_0 x^3$ and $S_1(x) = 4 + b_1 (x 1) + c_1 (x 1)^2 + d_1 (x 1)^3$.
- $(2) S(0) = S_0(0) = f(0) = 2, S(1) = S_1(1) = f(1) = 4, \text{ and } S(3) = f(3) = 5.$
- (3) $S_0(1) = 4 = S_1(1) = 2 + b_0 + c_0 + d_0$ and $S(3) = 5 = S_1(3) = 4 + 2b_1 + 4c_1 + 8d_1$.
- (4) First notice that $S'_0(x) = b_0 + 2c_0x + 3d_0x^2$ and $S'_1(x) = b_1 + 2c_1(x-1) + 3d_1(x-1)^2$ Then $S'(1) = S_0'(1) = b_0 + 2c_0 + 3d_0 = b_1 = S_1'(1)$
- (5) Notice that $S_0''(x) = 2 c_0 + 6 d_0 x$ and $S_1''(x) = 2 c_1 + 6 d_1 (x 1)$. Then $S''(1) = S_0''(1) = 2 c_0 + 6 d_0 = 2 c_1 = S_1''(1)$.

(6) We will look at both possible boundary conditions here, but when finding S(x), we need to choose exactly one condition.

(a) $0 = S''(0) = S_0''(0) = 2 c_0$ and $0 = S''(3) = S_1''(3) = 2 c_1 + 12 d_1$.

(b) To apply the clamped boundary condition we actually need two additional values: suppose f'(0) = 1 and f'(3) = -1. Then 1 - f'(0) - f'(0) - f'(0) - h and 1 - f'(2) - f'(2) - h + 4 - h + 12 - h.

Then
$$1 = f'(0) = S'(0) = S_1'(0) = b_0$$
 and $-1 = f'(3) = S'(3) = S_1'(3) = b_1 + 4c_1 + 12d_1$.

To find the free spline, we gather the equations from above into the following system:

 $\begin{array}{l} 4 + 2 \, b_1 + 4 \, c_1 + 8 \, d_1 = 5; \\ 2 + b_0 + c_0 + d_0 = 4; \\ b_0 + 2 \, c_0 + 3 \, d_0 = b_1; \\ 2 \, c_0 + 6 \, d_0 = 2 \, c_1; \\ 2 \, c_0 = 0 \\ 2 \, c_1 + 12 \, d_1 = 0 \end{array}$

From the last equation, we see that $c_0 = 0$. Using this and a little algebra, this simplifies the system to

give: $2 b_1 + 4 c_1 + 8 d_1 = 1;$ $b_0 + d_0 = 2;$ $b_0 + 3 d_0 - b_1 = 0;$ $3 d_0 - c_1 = 0;$ $c_1 + 6d_1 = 0;$

Notice that this is a system of 5 equations in 5 unknowns. Solving this system using it matrix form gives

														1	0	0	0	0	$\frac{9}{4}$
0 1 1 0 0	0	2	4	8	1		0	0	2	4	8	1		0	1	0	0	0	$-\frac{1}{4}$
1	1	0	0	0	2		1	1	0	0	0	2	reduced row echelon form →						
	3	-1	-1	0	0	=	1 0	3 3	-1 0	-1	0	0							2
0	0	0	1	6	0		0	0	0	1	6	0		0	0	0	1	0	$-\frac{3}{4}$
-																			$\frac{1}{8}$

Thus we have
$$b_0 = \frac{9}{4}$$
, $c_0 = 0$, $d_0 = -\frac{1}{4}$, $b_1 = \frac{3}{2}$, $c_1 = -\frac{3}{4}$, $d_1 = \frac{1}{8}$.
Thus $S_0 := x \rightarrow -\frac{1}{4}x^3 + \frac{9}{4}x + 2 = x \rightarrow -\frac{1}{4}x^3 + \frac{9}{4}x + 2$ and
 $S_1 := x \rightarrow 4 + \frac{3}{2}(x-1) - \frac{3}{4}(x-1)^2 + \frac{1}{8}(x-1)^3 = x \rightarrow \frac{5}{2} + \frac{3}{2}x - \frac{3}{4}(x-1)^2 + \frac{1}{8}(x-1)^3$
Notice $S_0(0) = 2$, $S_0(1) = 4$, $S_1(1) = 4$, $S_1(3) = 5$ (we could also verify the derivative conditions)

For the clamped spline, we have:

 $\begin{array}{l} 2 \ b_1 + 4 \ c_1 + 8 \ d_1 = 1; \\ 2 \ + b_0 + c_0 + d_0 = 4; \\ b_0 + 2 \ c_0 + 3 \ d_0 = b_1; \\ 2 \ c_0 + 6 \ d_0 = 2 \ c_1; \\ b_0 = 1 \\ b_1 + 4 \ c_1 + 12 \ d_1 = -1 \end{array}$

Which simplifies to give:

 $\begin{array}{l} 2 \ b_1 + 4 \ c_1 + 8 \ d_1 = 1; \\ c_0 + d_0 = 1; \\ 2 \ c_0 + 3 \ d_0 - b_1 = -1; \end{array}$

$$c_0 + 3d_0 - c_1 = 0;$$

 $b_1 + 4 c_1 + 12 d_1 = -1$

Again putting this into matrix form, we have:

$$\begin{bmatrix} 0 & 0 & 2 & 4 & 8 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 2 & 3 & -1 & 0 & 0 & -1 \\ 1 & 3 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 4 & 12 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 2 & 4 & 8 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 2 & 3 & -1 & 0 & 0 & -1 \\ 1 & 3 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 4 & 12 & -1 \end{bmatrix} \xrightarrow{\text{reduced row echelon form}} \text{reduced row echelon form} \left\{ \begin{array}{c} 1 & 0 & 0 & 0 & 0 & \frac{23}{12} \\ 0 & 1 & 0 & 0 & 0 & -\frac{11}{12} \\ 0 & 0 & 1 & 0 & 0 & \frac{25}{12} \\ 0 & 0 & 0 & 1 & 0 & 0 & \frac{25}{12} \\ 0 & 0 & 0 & 1 & 0 & -\frac{5}{6} \\ 0 & 0 & 0 & 0 & 1 & \frac{1}{48} \end{array} \right\}$$

Then we have:

 $S_{0} := x \rightarrow -\frac{11}{12}x^{3} + \frac{23}{12}x^{2} + x + 2 = x \rightarrow -\frac{11}{12}x^{3} + \frac{23}{12}x^{2} + x + 2 \text{ and}$ $S_{1} := x \rightarrow 4 + \frac{25}{12}(x-1) - \frac{5}{6}(x-1)^{2} + \frac{1}{48}(x-1)^{3} = x \rightarrow \frac{23}{12} + \frac{25}{12}x - \frac{5}{6}(x-1)^{2} + \frac{1}{48}(x-1)^{3} = x \rightarrow \frac{23}{12} + \frac{25}{12}x - \frac{5}{6}(x-1)^{2} + \frac{1}{48}(x-1)^{3} = x \rightarrow \frac{23}{12} + \frac{25}{12}x - \frac{5}{6}(x-1)^{2} + \frac{1}{48}(x-1)^{3} = x \rightarrow \frac{23}{12} + \frac{25}{12}x - \frac{5}{6}(x-1)^{2} + \frac{1}{48}(x-1)^{3} = x \rightarrow \frac{23}{12} + \frac{25}{12}x - \frac{5}{6}(x-1)^{2} + \frac{1}{48}(x-1)^{3} = x \rightarrow \frac{23}{12} + \frac{25}{12}x - \frac{5}{6}(x-1)^{2} + \frac{1}{48}(x-1)^{3} = x \rightarrow \frac{23}{12} + \frac{25}{12}x - \frac{5}{6}(x-1)^{2} + \frac{1}{48}(x-1)^{3} = x \rightarrow \frac{23}{12} + \frac{25}{12}x - \frac{5}{6}(x-1)^{2} + \frac{1}{48}(x-1)^{3} = \frac{1}{48}(x-1)^{3$