Cubic Splines

Definition: Suppose $f(x)$ is a function defined on [a,b]. Given $n+1$ points $a = x_0 < x_1 < \ldots < x_{n-1} < x_n = b,$

a **cubic spline interpolate S** for f(x) is a function that satisfies the following conditions:

(1) S(x) is a piecewise defined cubic polynomial with $S(x) = S_j(x)$, a cubic polynomial, on the interval

 $[x_j, x_{j+1}]$ for each *j* = 0, 1,..., *n*. $(2) S(x_j) = f(x_j)$ for each $j = 0, 1, ..., n$. $(3) S_{j+1}(x_{j+1}) = S_j(x_{j+1})$ for each $j = 0, 1, ..., n-2$. $(4) S'_{j+1}(x_{j+1}) = S'_{j}(x_{j+1})$ for each $j = 0, 1, ..., n-2$. $(5) S^{'''}_{j+1}(x_{j+1}) = S^{'''}_{j}(x_{j+1})$ for each $j = 0, 1, ..., n-2$. (6) One of the following two boundary conditions hold: (a) The "Natural" or "free" boundary condition: $S''(x_0) = S''(x_n) = 0$.

(b) The "Clamped" boundary condition: $S'(x_0) = f'(x_0)$ and $S'(x_n) = f'(x_n)$.

A spline satisfying 1-5 and 6a is called a **natural spline.** A spline satisfying 1-5 and 6b is called a **clamped spline.**

Example: Suppose we have that $f(0) = 2$, $f(1) = 4$, and $f(3) = 5$.

The defintion of a cubic spline give the following equations:

(1) Let $S_0(x) = 2 + b_0 x + c_0 x^2 + d_0 x^3$ and $S_1(x) = 4 + b_1 (x - 1) + c_1 (x - 1)^2 + d_1 (x - 1)^3$.

 $(S(0) = S_0(0) = f(0) = 2, S(1) = S_1(1) = f(1) = 4, \text{ and } S(3) = f(3) = 5.$

 $(3) S_0(1) = 4 = S_1(1) = 2 + b_0 + c_0 + d_0$ and $S(3) = 5 = S_1(3) = 4 + 2b_1 + 4c_1 + 8d_1$.

- (4) First notice that *S* '₀(*x*) = *b*₀ + 2 $c_0x + 3 d_0x^2$ and *S* '₁(*x*) = *b*₁ + 2 $c_1(x 1) + 3 d_1(x 1)^2$ Then *S* '(1) = S_0 ' (1) = $b_0 + 2c_0 + 3d_0 = b_1 = S_1$ '(1)
- (5) Notice that $S_0''(x) = 2 c_0 + 6 d_0 x$ and $S_1''(x) = 2 c_1 + 6 d_1 (x 1)$. Then $S''(1) = S_0''(1) = 2 c_0 + 6 d_0 = 2 c_1 = S_1''(1)$.

(6) We will look at both possible boundary conditions here, but when finding $S(x)$, we need to choose exactly one condition.

(a) $0 = S''(0) = S_0''(0) = 2 c_0$ and $0 = S''(3) = S_1''(3) = 2 c_1 + 12 d_1$.

 (b) To apply the clamped boundary condition we actually need two additional values: suppose $f'(0) = 1$ and $f'(3) = -1$.

Then
$$
1 = f'(0) = S'(0) = S_1'(0) = b_0
$$
 and $-1 = f'(3) = S'(3) = S_1'(3) = b_1 + 4c_1 + 12d_1$.

To find the free spline, we gather the equations from above into the following system:

$$
4 + 2 b1 + 4 c1 + 8 d1 = 5;\n2 + b0 + c0 + d0 = 4;\n b0 + 2 c0 + 3 d0 = b1;\n2 c0 + 6 d0 = 2 c1;\n2 c0 = 0\n2 c1 + 12 d1 = 0
$$

From the last equation, we see that $c_0 = 0$. Using this and a little algebra, this simplifies the system to give:

 $2b_1+4c_1+8d_1=1;$ $b_0 + d_0 = 2;$ $b_0 + 3 d_0 - b_1 = 0;$ $3 d_0 - c_1 = 0;$ $c_1 + 6d_1 = 0;$

Notice that this is a system of 5 equations in 5 unknowns. Solving this system using it matrix form gives

Thus we have $b_0 = \frac{9}{4}$ 4 , $c_0 = 0$, $d_0 = -\frac{1}{4}$ $\frac{1}{4}$, $b_1 = \frac{3}{2}$ 2 $,c_1 = -\frac{3}{4}$ $\frac{3}{4}$, $d_1 = \frac{1}{8}$ 8 . Thus $S_0 := x \rightarrow -\frac{1}{4}$ $\frac{1}{4}x^3 + \frac{9}{4}$ $\frac{9}{4}x + 2 = x \rightarrow -\frac{1}{4}$ $\frac{1}{4}x^3 + \frac{9}{4}$ $\frac{9}{4}x + 2$ and $S_1 := x \rightarrow 4 + \frac{3}{2}$ 2 $(x-1) - \frac{3}{4}$ 4 $(x-1)^2 + \frac{1}{2}$ 8 $(x-1)^3 = x \rightarrow \frac{5}{2}$ 2 $+\frac{3}{4}$ 2 $x - \frac{3}{4}$ 4 $(x-1)^2 + \frac{1}{2}$ 8 $(x-1)^3$ Notice $S_0(0) = 2$, $S_0(1) = 4$, $S_1(1) = 4$, $S_1(3) = 5$ (we could also verify the derivative conditions)

For the clamped spline, we have:

 $2b_1+4c_1+8d_1=1;$ $2 + b_0 + c_0 + d_0 = 4;$ $b_0 + 2c_0 + 3d_0 = b_1;$ $2c_0 + 6d_0 = 2c_1;$ $b_0 = 1$ $b_1 + 4c_1 + 12d_1 = -1$

Which simplifies to give:

 $2b_1+4c_1+8d_1=1;$ $c_0 + d_0 = 1;$ $2c_0+3d_0-b_1=-1;$

$$
c_0 + 3d_0 - c_1 = 0;
$$

$$
b_1 + 4c_1 + 12d_1 = -1
$$

Again putting this into matrix form, we have:

$$
\begin{bmatrix} 0 & 0 & 2 & 4 & 8 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 2 & 3 & -1 & 0 & 0 & -1 \\ 1 & 3 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 4 & 12 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 2 & 4 & 8 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 2 & 3 & -1 & 0 & 0 & -1 \\ 1 & 3 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 4 & 12 & -1 \end{bmatrix}
$$

\n
$$
\text{Then we have:}
$$

\nThen we have:

$$
S_0 := x \to -\frac{11}{12}x^3 + \frac{23}{12}x^2 + x + 2 = x \to -\frac{11}{12}x^3 + \frac{23}{12}x^2 + x + 2
$$
 and
\n
$$
S_1 := x \to 4 + \frac{25}{12}(x - 1) - \frac{5}{6}(x - 1)^2 + \frac{1}{48}(x - 1)^3 = x \to \frac{23}{12} + \frac{25}{12}x - \frac{5}{6}(x - 1)^2 + \frac{1}{48}(x - 1)^3
$$

\n
$$
S_0(0) = 2, S_0(1) = 4, S_1(1) = 4, S_1(3) = 5
$$
 (we could also verify the derivative conditions)