
Math 476
Exam 2

Instructions: You will have 55 minutes to complete this exam. The credit given on each problem will
be proportional to the amount of correct work shown. Answers without supporting work will receive little
credit.
Work your exam on separate sheets of paper. Be sure to number each problem and put your name on each
page.

1. (10 points) Let ϕ : G→ G be an isomorphism. Prove one of the following:

(a) ϕ(e) = e. [ϕ maps the identity in G to the identity in G]

Recall that in any group e · e = e. Then, using the group operation preservation property of an
isomorphism, ϕ(e) = ϕ(e · e) = ϕ(e)ϕ(e). That is, ϕ(e) = ϕ(e)ϕ(e). Therefore, using the left
cancellation property (or, left multiplying by [ϕ(e)]−1), we have e = ϕ(e). 2.

(b) If H ≤ G, then ϕ(H) ≤ G [ϕ maps subgroups to subgroups]

First, note that since e ∈ H, ϕ(e) ∈ ϕ(H), so ϕ(H) 6= ∅.

Let h1, h2 ∈ ϕH. Then there exist elements h1, h2 ∈ G such that ϕ(h1) = h1, and ϕ(h2) = h2.
Since H ≤ G, h−1

2
∈ H (subgroups are closed under taking inverses). Then h1 · h

−1

2
∈ H as well

(subgroups are closed under the group operation).

By definition, ϕ
(

h1 · h
−1

2

)

∈ ϕ(H). However, since ϕ is an isomorphism, ϕ
(

h1 · h
−1

2

)

=

ϕ(h1)ϕ
(

h−1

2

)

= ϕ(h1) [ϕ(h2)]
−1.

Hence, using the one step subgroup test, ϕ(H) ≤ G.

2. (10 points) Let G be a group and H a subgroup of G. Prove that aH = bH if and only if a ∈ bH.

First, one should notice that there are two directions to prove.

First, suppose that aH = bH. Since e ∈ H, then a · e = a ∈ aH (aH = {ah : h ∈ H}). Therefore,
since aH = bH, a ∈ bH.

Next, suppose that a ∈ bH. Then a = bh for some h ∈ H. Recall that for any h ∈ H, hH = H, since
for any h′ ∈ H, h−1h′ ∈ H, so h (h−1h′) = h′ ∈ hH, and, since H is a subgroup, for any h′′ ∈ H,
hh′′ ∈ H. Therefore, aH = (bh)H = b(hH) = bH.

3. (8 points) Let H and K be subgroups of a group G. Suppose |H| = 24 and |K| = 18. Find all
possible values for |H ∩K|. Briefly justify your answer.

First, recall that, as proven on a previous homework assignment, HcapK is a subgroup of G. In fact,
(H ∩K) ≤ H and (H ∩K) ≤ K.

Next, recall that by Lagrange’s Theorem, the order of a subgroup always divides the order of a group
containing that subgroup. From this, we know that |H ∩K| divides both 18 and 24. Notice that the
factors of 18 are: 1, 2, 3, 6, 9, 18 while the factors of 24 are: 1, 2, 3, 4, 6, 8, 12, 24. Then a complete list
of the possible orders for |H ∩K| is: 1, 2, 3, 6.



4. (6 points) Explain why D4 and Z8 are not isomorphic even though both are groups of order 8.

There are quite a few ways to see that these two groups are not isomorphic. A few of you tried
to argue that there is no bijection between the two, but that is not true. There are 8! bijections
between these groups, 7! of which send the identity to the identity. The problem comes when trying
to preserve the group operation. The main ways to show that two groups are not isomorphic is to
assume that there is an isomorphism and demonstrate that this leads to a contradiction, or to show
that a property that is preserved by all isomorphisms is not shared by both groups. I will take the
second approach.

Method 1: Recall that isomorphisms preserve abelian groups. That is, of G1 and G2 are isomorphic
and G1 is abelian, then G2 is also abelian. However, D4 is not abelian, while Z8 is abelian. Hence
D4 and Z8 are not isomorphic.

Method 2: Recall that isomorphisms preserve the order of group elements. That is, if phi is an
isomorphism between G1 and G2 and g ∈ G1, then |g| = |φ(g)|. However while Z8 has elements of
order 8, D4 does not have any elements of order 8. Hence D4 and Z8 are not isomorphic.

5. Let G = Z6 ⊕ Z4

(a) (2 points) Find |G|.

Since elements of G are ordered pairs drawn from Z6 and Z4 respectively, |G| = 6 · 4 = 24.

(b) (5 points) Find |(2, 2)|

The simplest way to see this is to recall that |(g1, g2)| = lcm (|g1|, |g2|).

Since |g1| = |2| = 3 (here we are thinking of 2 in Z6) and |g2| = |2| = 2 (here we are thinking of
2 in Z4), then |(2, 2)| = lcm(3, 2) = 6.

One could also find this directly by taking (2, 2) to increasing powers.

(c) (5 points) Is G cyclic? Justify your answer.

No. Using the result |(g1, g2)| = lcm (|g1|, |g2|), since the maximum order of elements in Z6

in 6, and the maximum order of elements in Z4 is 4, then the maximum order in the sum
is lcm(6, 4) = 12. Since this is less than the order of the group (24), there can be no cyclic
generator, so Z6 ⊕ Z4 is not a cyclic group.

A much simpler way to solve this problem was to recall that we have a theorem that states that
Zm⊕Zn

∼= Zmn if and only if gcd(m,n) = 1. Here, gcd(6, 4) = 2 > 1, so this group is not cyclic.

(d) (6 points) Find all elements of G that have order 4.

Notice that Z6 has no elements of order 4, since 4 does not divide 6. Therefore, to get an element
of order 4, we must choose an element of order 4 from Z4 is go in the second coordinate, and
we need an element of order 1 or 2 from Z6 to go into the first component.

Notice that the only elements of order 1 and 2 in Z6 are 0 and 3 respectively. The elements of
order 4 in Z4 are the generators 1 and 3. Therefore, the following is a complete list of elements
of order 4 in G:

(0, 1), (0, 3), (3, 1), (3, 3)



6. Let G = Z12 and let H = 〈4〉

(a) (4 points) Find the left cosets of H in G.

First notice that H = 〈4〉 = {0, 4, 8}.

Then the following is a complete list of the left cosets of H in G:

0 +H = {0, 4, 8}, 1 +H = {1, 5, 9}, 2 +H = {2, 6, 10}, and 3 +H = {3, 7, 11}.

(b) (4 points) Prove that H ⊳ G.

There were three main ways to approach this problem. The simplest was to observe that since
G is abelian, all subgroups of G are normal.

The second method was to compute the right cosets and compare them pairwise to the left
cosets.

H + 0 = {0, 4, 8}, H + 1 = {1, 5, 9}, H + 2 = {2, 6, 10}, and H + 3 = {3, 7, 11}.

Since the left and right cosets are pairwise equal (a+H = H + a for all a ∈ G) then H ⊳ G.

The third way to show normality was to use the normality test and show that for each x ∈ G,
that xHx−1 ⊂ H (in fact, sinceG is abelian, one can easily show that for all x ∈ G, xHx−1 = H).

(c) (8 points) Construct a Cayley Table for the factor group G/H and use it to determine whether
or not G/H is cyclic.

Note that since the group Z12 is an additive group, one should use additive notation when
writing the cosets. Here is a Cayley Table for the factor group G/H:

0 +H 1 +H 2 +H 3 +H
0 +H 0 +H 1 +H 2 +H 3 +H
1 +H 1 +H 2 +H 3 +H 0 +H
2 +H 2 +H 3 +H 0 +H 1 +H
3 +H 3 +H 0 +H 1 +H 1 +H

Note that we used the operation (a +H) + (b +H) = (a + b)H, and if necessary, replaced the
representative (a+ b) with the standard equivalent coset representative.

Many of you tried to use the fact that the Cayley Table is symmetric to conclude that this
group is cyclic. This does not work. Having a symmetric Cayley Table means that the group is
abelian, but there are abelian groups which are not cyclic (for example, Z2 ⊕ Z2).

G/H is indeed cyclic. To show this, we note that 1 + H has order 4, and hence is a cyclic
generator for the group.



7. Let ψ : Z15 → Z20 be given by ψ(k) = 4k.

(a) (4 points) Explain why ψ must be a homomorphism.

Notice that for any a, b ∈ Z15, ψ(a+ b) = 4(a+ b) = 4a+ 4b = ψ(a) + ψ(b) (where these are all
computed modulo 20). Hence ψ is a homomorphism.

(b) (4 points) Find the kernel of ψ.

The kernel consists of all elements mapped to 0 in Z20. Since the maps acts by multiplying
elements by 4, this means that the kernel is the set of elements that are multiples of 5. That is,
kerψ = {0, 5, 10}.

(c) (4 points) Find the image of ψ.

Since the generator 1 in Z15 is mapped to the element 4 in Z20, imageψ = 〈4〉 = {0, 4, 8, 12, 16}.

(d) (4 points) Find ψ−1(12).

Since ψ(3) = 12, then ψ−1(12) = 3 + kerψ = {3, 8, 13}.

8. (10 points) List all isomorphism classes for an abelian group G if |G| = 500.

Using the Fundamental Theorem of Abelian Finite Abelian Groups and the Theorem that Zm⊕Zn

∼=
Zmn if and only if gcd(m,n) = 1, we can find all isomorphism classes using sums of groups of the
form Zn and by looking at “partitioning” the prime factors of 500.

Notice that 500 = 53 · 22. Therefore, the following is a complete list of the isomorphism classes of
abelian groups of order 500:

(a) Z500
∼= Z125 ⊕ Z4

(b) Z250 ⊕ Z2
∼= Z125 ⊕ Z2 ⊕ Z2

(c) Z100 ⊕ Z5
∼= Z25 ⊕ Z5 ⊕ Z4

(d) Z50 ⊕ Z10
∼= Z25 ⊕ Z5 ⊕ Z2 ⊕ Z2

(e) Z20 ⊕ Z5 ⊕ Z5
∼= Z5 ⊕ Z5 ⊕ Z5 ⊕ Z4

(f) Z10 ⊕ Z10 ⊕ Z5
∼= Z5 ⊕ Z5 ⊕ Z5 ⊕ Z2 ⊕ Z2


