Math 476
Exam 3

Instructions: You will have 55 minutes to complete this exam. The credit given on each problem will
be proportional to the amount of correct work shown. Answers without supporting work will receive little
credit.

Work your exam on separate sheets of paper. Be sure to number each problem and put your name on each

page.
1. (12 points) Prove that conjugacy is an equivalence relation on a group.

Reflexive: Let a € G. Notice that e-a-e™' = (ea)e = ae = a. Therefore, a € cl(a), hence conjugacy
is reflexive.

Symmetric: Suppose b € cl(a). Then, for some z € G, b = zax~!. From this, we have x~'bx = a.
Thus a € cl(b). Hence conjugacy is symmetric.

Transitive: Suppose b € cl(a) and ¢ € cl(b). Then for some z,y € G, b = zar™! and ¢ = yby~'.

Then ¢ = y(zaz ')y~ = (zy)a(zy)™" [recall that (zy)~' = y~'z7']. Hence ¢ € cl(a). Therefore,
conjugacy is transitive.

We have shown that conjugacy is reflexive, symmetric, and transitive. Thus conjugacy is an equiva-
lence relation. Thus conjugacy is an equivalence relation.

2. Let G be a group with |G| = 126.

(a) (b points) If G’ has more than one Sylow-3 subgroup, how many does it have?

First, notice that 126 = 2 - 32 - 7. Let ns represent the number of distinct Sylow-3 subgroups of
G. Recall that by Theorem 24.5, we must have ng = 1(mod3). Then n3 = 1,4,7,10,13,16, - - -.

We also know from Theorem 24.5 that ns must divide 14. Hence we must have n3 = 1 or n3 = 7.
Thus, if there is more than one Sylow-3 subgroup, we must have 7 of them.

(b) (8 points) Show that G has at least one proper normal subgroup.

Let n7 denote the number of Sylow-7 subgroups of GG. Then, again using Theorem 24.5, n; =
1(mod)7, so ny =1,8,15,22---.

We also know from Theorem 24.5 that n; must divide 18. Hence we must have n; = 1. Finally,
applying the corollary to Theorem 24.5, since there is a unique Sylow-7 subgroup, this subgroup
is normal in G. Since its order is 7 while the order of G is 126, we have found a proper normal
subgroup of G.

3. Let R = Zgo.

(a) (6 points) Find a zero divisor in R and demonstrate that it is a zero divisor.

Note than every non-unit is R is a zero divisor. For example, since (6)(5) = 30 = 0(mod30),
then 6 is a zero divisor in R.



(b) (6 points) Find an idempotent a with a # 0 and a # 1 and demonstrate that it is an idempotent.

There are several possible examples here. One possibility is 6. Since 6% = 36 = 6(mod30), then
6 is an idempotent element in R.

(¢) (6 points) Find a unit @ in R and demonstrate that it is a unit.

There are many examples here (any element that is relatively prime to 30 is a unit in this ring).
One possibility is 11. Since (11)(11) = 121 = 1(mod30), then 11 is a unit in R.

(d) (4 points) Find the characteristic of R.

Recall that, as proven in class, in a ring with unity, the characteristic of the ring is equal to the
additive order of the unity in the ring. Here, the element 1 has order 30. Hence charR = 30.

(e) (8 points) Draw the ideal lattice for R. Use it to find the maximal ideals or R.

<1>
<2> <3> <5>
<6> <10> <15>
<0>

From the lattice diagram, we see that (2), (3), and (5) are maximal ideals in R.

4. (12 points) Let R = Z,[v/5]. Construct a multiplication table for the non-zero elements of this ring.
Based on your table, is R an integral domain? Is it a field?

First, notice that R = Zy[v/5] = {0,1,v/5,1 + v/5}. Then the multiplication table for the non-zero
elements is:

1 V5 [ 1+45

1 1 Vi | 1+V5

V5 V5 1 1++/5
T+V5 [ 1+V5 [ 1+V5 ] 0

Notice that, since (1 + v/5)(1 +v/5) = 0, then 1 ++/5 is a zero divisor. Hence R is not an integral
domain. Also, since 1+ +/5 is a zero divisor, it is not a unit, hence R is also not a field (alternatively,
every field is also an integral domain — see course notes or page 251 in your textbook).




5. (12 points) Let R be a ring and let A and B be ideals of R. Prove that AN B is also an ideal of R.

Let x,y € AN B and let r € R. Consider x — y. Since A is an ideal, then x —y € A. Similarly, since
B is an ideal, x — y € B. Therefore, z —y € AN B so AN B is closed under addition.

Next, consider rx. Since Since A is an ideal, then rx € A. Similarly, since B is an ideal, rz € B.
Therefore, rx € AN B.

Finally, consider zr. Since Since A is an ideal, then zr € A. Similarly, since B is an ideal, zr € B.
Therefore, xr € AN B.

Thus, by the ideal test, AN B is an ideal of R.

6. (8 points) Let R = Z[z]. Give an example of an infinite subset of R that is not an ideal of R. Justify
your answer.

There are many possible examples. All we need is an infinite subset of R that is not closed under
either subtraction or under left or right ring multiplication. Here is one possibility:

Let S = {p(z) : P(z) = ax® + bx + ¢ for a,b,c € Z} (that is, the set of quadratic polynomials with
integer coefficients).

Notice that p(x) = 2> +3x — 4 isin S, and = € R, but zp(z) = 2* + 32> — 4z is not in S. This S is
not an ideal of Z[z].

7. (10 points) Let ¢ : R — S be a ring homomorphism. Prove one of the following properties of ring
homomorphisms:

(a) Let A be a subring of R. Then ¢(A) = {¢(a) : a € A} is a subring of S.

Let s1, 82 € ¢(A). Then Iry,r; € A such that ¢(r1) = s; and ¢(ry) = sy. Notice that since A is
a subring of R, then r| —ry € A and rry € A. With this in mind, ¢(r; —19) = ¢(r1) — ¢(r2) =
s1 — 83 € ¢(A). Similarly, ¢(r172) = ¢(r1)@(r2) = s152 € P(A).

Since ¢(A) is closed under both subtraction and multiplication, ¢(A) is a subring of S.
(b) Ker¢ ={r € R:¢(r) =0} is an ideal of R.

First, since ¢ is a ring homorphism, it satisfies the group homomorphism property that ¢(0) = 0
[¢ maps the additive identity to the additive identity]. Thus Ker ¢ # ().

Next, let a,b € Ker¢ and let r € R. Then ¢(a —b) = ¢(a) — ¢(b) = 0 — 0 = 0. Thus
a—be Ker¢.

Also, ¢(ra) = ¢(r)¢(a) = ¢(r)(0) = 0. Similarly, ¢(ar) = ¢(a)d(r) = ¢(0)(r) = 0.
Hence, by the ideal test, Ker ¢ is an ideal of R.



8. Let ¢ : Z1o — Zgg be defined via ¢(z) = bx.

(a) (6 points) Assuming that ¢ is a ring homomorphism, find Ker¢.

Since Zo us fairly small, we will check using direct computation.

#(0) = 5(0)(mod 20) = 0(mod 20) = #(6) = 5(6)(mod 20) = 30(mod 20) = 10
¢(1) = 5(1)(mod 20) = 5(mod 20) = o(7) = 5(7)(mod 20) = 35(mod 20) = 15
#(2) = 5(2)(mod 20) = 10(mod 20) = 10. #(8) = 5(8)(mod 20) = 40(mod20) =0
#(3) = 5(3)(mod 20) = 15(mod 20) = 15.  ¢(9) = 5(9)(mod 20) = 45(mod20) =5
é(4) = 5(4)(mod 20) = 20(mod20) = 0 $(10) = 5(10)(mod 20) = 50(mod 20) = 10
#(5) = 5(5)(mod 20) = 25(mod20) =5  ¢(11) = 5(11)(mod 20) = 55(mod 20) = 15

From these computations, we see that Ker ¢ = {0,4,8} [which is the ideal (4)].

(b) (Extra Credit) Prove that ¢ is a ring homomorphism.

First note that to receive full credit on this problem, I expected you to carefully consider the
effect of remainders modulo 12 and 20 on the computations. We were a little loose on this
when we covered homomorphisms of groups, but we went back over these computations much
more carefully in examples concerning homomorphisms of rings since the impact of modular
arithmetic on multiplication is a bit more subtle.

Let k, ¢ € Z15. To simplify notation, suppose k+¢ = 12m-+ry and kl = 12n+ry where m, ninZ,
0<ri<12and 0 <ry < 12.

Then ¢(k +¢) = ¢(12m + ry) = ¢(r1) = bry = 5(k + € — 12m) = 5k + 50 — 60m = bk + 5( =
¢(k) + ¢(0).

Similarly, ¢(kl) = ¢(12n + re) = ¢(r2) = bry = 5(kl — 12n) = 5kl — 60n = 5kl = (5k)(5() =
¢(k)o(0).

Note the all equalities above are mod 20, and the second to last equality uses the fact that
5 = 25(mod 20).

Thus ¢ is a ring homomorphism.



