
Math 476
Exam 4

Instructions: You will have 55 minutes to complete this exam. The credit given on each problem will be proportional to
the amount of correct work shown. Answers without supporting work will receive little credit.
Work your exam on separate sheets of paper. Be sure to number each problem and put your name on each page.

1. (12 points) Recall that in constructing the field of quotients of in integral domain D, we first defined the set S =
{(a, b) : a, d ∈ D, b 6= 0} and then defined an equivalence relation ≡ on S via (a, b) ≡ (c, d) if ad = bc. We then
defined F as the set of equivalence classes of A under ≡. Finally, we defined addition and multiplication in F via
a/b+ c/d = (ad+ bc)/(bd) and a/b · c/d = (ac)/(bd).

Prove that the addition operation on F is well defined.

Proof: Suppose that a
b
= a′

b′
and c

d
= c′

d′
. Then, by definition of equivalence in S, (1) ab′ = ba′, and (2) cd′ = dc′.

Notice that (ad+ bc)(b′d′) = adb′d′ + bcb′d′ (by the distributive property)

= ab′dd′ + cd′bb′ (since D is a domain, it is commutative), which, using (1) and (2) above, = ba′dd′ + dc′bb′.

= a′d′(bd) + b′c′(bd) (again using commutativity), or, by the distributive property, = (a′d′ + b′c′)(bd).

That is, (ad + bc)(b′d′) = a′d′ + b′c′)(bd). Then (ad + bc)/(bd) = (a′d′ + b′c′)/(b′d′). Hence the addition operation is
well defined. 2.

2. Prove one of the following:

(a) (15 points) Let F be a field, a ∈ F, and f(x) ∈ F[x]. Then f(a) is the remainder in the division of f(x) by x− a.

Proof: Applying the Division Algorithm to divide f(x) by x−a, we have f(x) = q(x)(x−a)+ r(x) with r(x) = 0
or deg, r(x) < deg x− a.

Notice that since x− a has degree 1, then r(x) must be a constant.

Next, using the result of the division above, we compute f(a) = q(a)(a − a) + r(a) = q(a)(0) + r(a). Therefore,
f(a) = r(a).

However, since r(x) is a constant, r(x) = r(a). Hence f(a) = r(x) is the remainder in the division of f(x) by
x− a. 2.

(b) (15 points) Let F be a field. Then F[x] is a principle ideal domain.

Proof: First, by Theorem 16.1, since F is a field, then F[x] is an integral domain. Let I be an ideal of F[x].

Case 1: If I = {0}, then I = 〈0〉, thus I is a principal ideal.

Case 2: Suppose I 6= {0}. Let g(x) be a polynomial of minimal degree in I. Notice that since g(x) ∈ I, then
〈g(x)〉 ⊂ I. (Recall: 〈g(x)〉 = {q(x)g(x) : q(x) ∈ F[x]}, and since g(x) ∈ I, then q(x)g(x) ∈ I for all q(x) ∈ F[x].)

Let f(x) ∈ I. Using the Division Algorithm, we may write f(x) = q(x)g(x) + r(x) with r(x) = 0 or deg r(x) <
deg g(x).

Notice that, f(x) ∈ I and q(x)g(x) ∈ I. Therefore, r(x) = f(x) − q(x)g(x) ∈ I. Since g(x) was chosen to have
minimal degree in I, we cannot have deg r(x) < deg g(x). Hence r(x) = 0. That is, f(x) = q(x)g(x).

Thus f(x) ∈ 〈g(x)〉. Therefore, I ⊂ 〈g(x)〉. Hence I = 〈g(x)〉.

Since we have shown that every ideal in F[x] is principal, then F[x] is a principal ideal domain. 2.



3. Prove one of the following:

(a) (15 points) Let p be a prime and suppose that f(x) ∈ Z[x] with deg, f(x) ≥ 1. Let f(x) be the polynomial in
Zp[x] obtained from f(x) by reducing all the coefficients of f(x) modulo p. If f(x) is irreducible over Zp and
deg f(x) = deg f(x), then f(x) is irreducible over Q.

Proof: Suppose, in order to obtain a contradiction, that f(x) is reducible over Q. Then, since f(x) ∈ Z[x],
by Theorem 17.2, f(x) is also reducible over Z. Therefore, there are polynomials g(x), h(x) ∈ Z[x] with f(x) =
g(x)h(x), deg g(x) < deg f(x), and deg h(x) < deg f(x).

Let g(x) and h(x) be the polynomials obtained from g(x) and h(x) by reducing their coefficients modulo p.

Since deg f(x) = deg f(x), we must have deg g(x) ≤ deg g(x) < deg f(x) = deg f(x), and h(x) ≤ deg h(x) <
deg f(x) = deg f(x).

But f(x) = g(x)h(x), thus f(x) is reducible over Zp, which is a contradiction.

Hence, contrary to our initial assumption, f(x) is irreducible over Q. 2.

(b) (15 points) Let f(x) ∈ Z[x], let g(x) ∈ Q[x], and suppose k is the smallest positive integer such that f(x) = kg(x).
Prove that f(x) is reducible over Z if and only if g(x) is reducible over Q.

Proof:

“⇒”: Suppose f(x) is reducible over Z. Then f(x) = p(x)q(x) for polynomials p(x), q(x) ∈ Z[x] with deg p(x) <
deg f(x) and deg q(x) < deg f(x). Also, as defined, k > 0, so, computing in Q[x], we have 1

k
f(x) = 1

k
p(x)q(x).

Therefore, g(x) =
(

1

k
p(x)

)

q(x). Notice that the degrees have not changed, and that 1

k
p(x) ∈ Q[x]. Hence g(x) is

reducible over Q.

“⇐”: Suppose g(x) is reducible over Q. Then g(x) = s(x)t(x) for polynomials s(x), t(x) ∈ Q[x] with deg s(x) <
deg g(x) and deg t(x) < deg q(x). Also, as defined, k > 0, so we have kg(x) = f(x) = k · s(x)t(x).

Therefore, f(x) is reducible over Q. Hence, by Theorem 17.2, since f(x) ∈ Z[x], f(x) is also reducible over Z. 2.

4. (12 points) Let f(x) = x4 + 4. Write f(x) as a product of irreducible factors over Z5.

Notice that over Z5, f(0) = 4, f(1) = 5 ≡ 0, f(2) = 20 ≡ 0, f(3) = 85 ≡ 0, and f(4) = 260 ≡ 0.

Therefore, x = 1, x = 2, x = 3, and x = 4 are zeros of f(x) in Z5. Hence, by the Factor Theorem, (x − 1), (x − 2),
(x− 3), and (x− 4) are factors of f(x). Since we are working in Z5, we may rewrite these factors as: (x+ 4), (x+ 3),
(x+ 2), and (x+ 1).

Claim: f(x) = (x+1)(x+2)(x+3)(x+4) is a complete factorization for f(x). Note that (x+1)(x+2)(x+3)(x+4) =
(x2 + 3x + 2)(x2 + 7x + 12) = (x2 + 3x + 2)(x2 + 2x + 2) = x4 + 3x3 + 2x2 + 2x3 + 6x2 + 4x + 2x2 + 6x + 4 =
x4 + 5x3 + 10x2 + 10x+ 4 = x4 + 4.

Since all these factors are linear, no further factorization is possible.

5. Show that each of the following polynomials is irreducible over Q.

(a) (7 points) f(x) = x5 + 6x4 − 9x3 + 12x− 15

Notice that if we take p = 3, then 3 6 | 1 , 3|6, 3| − 9, 3|12 and p| − 15, but since p2 = 9, p2 6 | −15. Hence, by
Eisenstein’s Criterion, f(x) is irreducible over Q.

(b) (7 points) g(x) = 2x3 − 3x2 + 7x− 2

We will use the Mod−p irreducibility test. Note that taking p = 2 would reduce the degree of g(x), so we try
p = 3.

Then g(x) = 2x3 + 0x2 + x + 1. Notice that g(0) = 1, g(1) = 4 ≡ 1, and g(2) = 16 + 2 + 1 = 19 ≡ 1. Therefore,
g(x) has no zeros over Z3. Hence, by Theorem 17.1, g(x) is irreducible over Z3.

Thus g(x) is irreducible over Q by the Mod-3 irreducibility test.



(c) (7 points) h(x) = 3

5
x4 + x− 7

5

We begin by finding an equivalent polynomial in Z[x]. Multiplying by the lcm of the denominators gives k(x) =
5 · h(x) = 3x4 + 5x− 7.

Next, we apply the Mod-2 irreducibility test to k(x). Then k(x) = x4 + x+1. Notice that k(0) = 1 and k(1) = 1,
so k(x) has no zeros over Z2. However, since our polynomial has degree 4, Theorem 17.1 does not apply. We must
check to see if there is an irreducible quadratic factor.

Recall that the quadratic polynomials in Z2 are: x2, x2 + 1, x2 + x, x2 + x + 1. Of these, the only irreducible
quadratic is x2 + x + 1 (the others have a zero and hence are products of linear factors). Using the division
algorithm, we see that x4 + x+1 = (x2 + x+1)(x2 + x) + 1. Thus x2 + x+1 is not a factor of x4 + x+1 over Z2.

Thus x4 + x + 1 is irreducible over Z2. Therefore, k(x) = 3x4 + 5x − 7 is irreducible over Q by the Mod-2
irreducibility test. Hence the original polynomial h(x) is also irreducible over Q.

6. (a) (5 points) List all polynomials with degree less than or equal to 3 in Z2[x].

0, 1, x, x+1, x2, x2+1, x2+x, x2+x+1, x3, x3+1, x3+x, x3+x+1, x3+x2, x3+x2+x, x3+x2+1, x3+x2+x+1

(b) (5 points) Find all irreducible cubic polynomials in Z2[x].

From above, the cubic polynomials in Z2[x] are: x
3, x3 +1, x3 + x, x3 + x+1, x3 + x2, x3 + x2 + 1, x3 + x2 + x+ 1

Notice that x3, x3 + x, x3 + x2, and x3 + x2 + x have x = 0 as a root.

Similarly, x3 +1 and x3 +x2 +x+1 have x = 1 as a root. The remaining polynomials: x3 +x+1 and x3 +x2 +1
are irreducible over Z2[x].

(c) (8 points) Let p(x) be one of the polynomials you found in part (b) above. List the elements in F = Z2[x]/〈p(x)〉
in standard additive form.

We will take p(x) = x3 + x+ 1 (the results of taking p(x) = x3 + x2 + 1 are similar). Let I = 〈p(x)〉.

Then the elements of F = Z2[x]/〈p(x)〉 are:

{0 + I, 1 + I, x+ I, (x+ 1) + I, x2 + I, (x2 + 1) + I, (x2 + x) + I, (x2 + x+ 1) + I}

(d) (8 points) Find a generator and use it to construct the conversion table from multiplicative to additive form in
F∗(you do not need to construct the other half of the conversion table).

Recall that F = Z2[x]/〈p(x)〉 can be thought of as the polynomials in Z2[2] of degree ≤ 2 with respect to the
equation x3+x+1 = 0, or x3 = x+1. Then the following gives a conversion table from multiplicative to additive
form in F∗:

Multiplicative Form Additive form
1 1
x x
x2 x2

x3 x+ 1
x4 x2 + x
x5 x2 + x+ 1
x6 x2 + x

(e) (5 points) How many proper subfields does the field F constructed above have?

First notice that F = GF (8) = GF (23). Then, by Theorem 22.3, F has a unique subfield of order pm for every
divisor m of 3. Since the only divisors of 3 are 1 and 3, and 3 would not yield a proper subfield, the only subfield
of F is GF (2).


