Math 261
Curve Sketching Example
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Let f(t) = e

. Before we even begin, we should notice that f(¢) is not defined for ¢t = +1.

A. Find the intercepts.

y-intercept: f(0) = Ozoil = % =0

z-intercepts: For a fraction to be zero, its numerator must be zero (and its denominator must be non-zero)
Here, if 2 = 0, then t = 0, so there is only one intercept, the point (0,0) which is both an a-intercept and a y-intercept.

B. Finding Increasing/Decreasing Intervals and Relative Extrema Using f'(t).
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Critical numbers:

Notice that f’(t) is undefined when t> — 1 = 0 or when t = +1.
Also notice that f/(t) =0 when t = 0.

Analyze the sign of f/(t):

x=-1 x=0 x=1

A
Y

Therefore, f(x) is increasing on the intervals: (—oo,—1) U (—1,0)
Similarly, f(x) is decreasing on the intervals: (0,1) U (1, 00)

Classify Local Extrema:
Notice that f(0) is defined, and f/(¢) goes from positive to negative at ¢t = 0, so there is a local maximum when ¢ = 0. The
value of this maximum is f(0) = 0, so the local maximum occurs at the point (0,0). This is the only local extremum.

C. Find Concavity and Inflection Points Using f”(t).
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To find the key values for the second derivative, notice that f”(t) is undefined when t = +1 and that f”(¢) is textitnever
zero.

Sign testing diagram for f”(¢):

x==1 x=1
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Therefore f(z) is concave up on the intervals (—oo, —1) U (1,00) and concave down on the interval (—1,1).

Notice that there are no inflection points, since the function is undefined at ¢ = +1, and these are the only places where f(t)
changes concavity.



Combined Sign Chart:
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D. Finding Asymptotes to the graph of f(t):

Horizontal asymptotes:

1, so f(t) has horizontal asymptote y = 1.
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Vertical asymptotes:
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Therefore, f(t) has vertical asymptotes t = —1 and ¢ = 1.

E. Combining All this Information to Sketch the graph of f(¢):
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