Math 261 Definite Integrals Handout

Approximating Area Using Partitions:

Given a function f on an interval $[a, b]$, we can approximate area using partitions that do not necessarily have rectangles all of the same width. A partition P of the interval $[a, b]$ of size n is a set of numbers $a = x_0 < x_1 < x_2 < ... < x_n - 1 < x_n = b$. $\Delta x_k = x_k = x_{k-1}$ is the width of the kth subinterval, and $||P||$, the norm of the partition P, is the width of the widest of all the subintervals in P.

The Riemann sum of f on [a, b] for a partition P is $R_P = \sum_{n=1}^{n}$ $k=1$ $f(w_k)\Delta x_k$, where w_k is some point in the kth subinterval of the partition P.

If $\lim_{\|P\|\to 0}$ $\sum_{n=1}^{\infty}$ $k=1$ $f(w_k)\Delta x_k = J$ for some real number J, then we say that f is integrable on [a, b], and the definite integral of f on [a, b] is

$$
\int_{a}^{b} f(x)dx = \lim_{\|P\| \to 0} \sum_{k=1}^{n} f(w_k) \Delta x_k = J
$$

Theorem 1 – Integrability of Continuous Functions: If a function f is continuous over the interval [a, b] then f is integrable over [a, b]. Similarly, if f has at most finitely any jump discontinuities and no other discontinuities on [a, b], then f is integrable over $[a, b]$.

Proof: The proof of this Theorem is beyond the scope of this course.

Properties of Definite Integrals

1. $\int_{a}^{b} c \, dx = c(b-a)$ 2. \int_{a}^{a} $\int_a^b f(x) \ dx = 0$ 3. $\int_{a}^{b} f(x) \, dx = - \int_{b}^{a}$ $\int_{b}^{a} f(x) \, dx$ 4. \int_{a}^{b} $\int_a^b cf(x) \ dx = c \int_a^b$ $\int_a f(x) dx$, for any constant c 5. $\int_{a}^{b} f(x) \pm g(x) \, dx = \int_{a}^{b}$ $\int_a^b f(x) dx \pm \int_a^b$ $\int_{a}^{b} g(x) \, dx$ 6. $\int_{a}^{b} f(x) \, dx = \int_{a}^{c}$ $\int_{a}^{c} f(x) dx + \int_{c}^{b}$ $\int_{c} f(x) dx$

7. If f has a maximum value M on $[a, b]$ and a minimum value m on $[a.b]$, then $m \cdot (b - a) \leq \int_{b}^{b}$ $\int_a f(x) dx \leq M \cdot (b-a).$

- 8. If f is integrable on $[a, b]$ and $f(x) \ge 0$ for every x in $[a, b]$, then $\int_a^b f(x) dx \ge 0$
- 9. If f and g are integrable on $[a, b]$ and $f(x) \ge g(x)$ for every x in $[a, b]$, then $\int_a^b f(x) dx \ge \int_a^b f(x) dx$ \int_a g(x) dx

Definitions: Let $y = f(x)$ be a function that is non-negative and integrable on an interval [a, b]. Then the **area under the curve** $y = f(x)$ **over [a,b]** is the definite integral of f from a to b: $A = \int^b$ $\int_a f(x) dx.$

Let f be a function that is integrable on an interval $[a, b]$. Then the **average value** of f over $[a, b]$ is $av(f) = \frac{1}{b-a}$ \int^b $\int_a f(x) dx.$

The Mean Value Theorem for Definite Integrals:

If f is continuous on [a, b], then there is a number c in the open interval (a, b) such that $f(c) = \frac{1}{b-a}$ \int^b $\int_a f(x) dx$