1. Find the derivative $y' = \frac{dy}{dx}$ for each of the following:

(a)
$$y = \pi^2 x + \pi x^2$$

 $y' = \pi^2 + 2\pi x$

(b)
$$y = \cot x$$

 $y' = -\csc^2 x$

(c)
$$y = \sqrt{x} \sec(x^2)$$

 $y' = \frac{1}{2} x^{-\frac{1}{2}} \sec(x^2) + x^{\frac{1}{2}} \sec(x^2) \tan(x^2) \cdot 2x$
 $y' = \frac{1}{2\sqrt{x}} \sec(x^2) + 2x\sqrt{x} \sec(x^2) \tan(x^2)$

(d)
$$y = 2\tan^3(2x^3)$$

 $y' = 6\tan^2(2x^3) \cdot \sec^2(2x^3) \cdot 6x^2 = 36x^2 \tan^2(2x^3) \sec^2(2x^3)$

(e)
$$y = \frac{x^2 - 7\cos(3x)}{x + \sin(3 - 2x)}$$

 $y' = \frac{(2x + 21\sin(3x))(x + \sin(3 - 2x)) - (x^2 - 7\cos(3x))(1 - 2\cos(3 - 2x))}{(x + \sin(3 - 2x))^2}$

Note: I won't make you take time to simplify problems like this one on the exam.

(f)
$$x^2y + 3xy - 5y^2 = 7$$

Differentiating with respect to x : $2xy + x^2y' + 3y + 3xy' - 10yy' = 0$
Then $(x^2 + 3x - 10y)y' = -2xy - 3y$
Thus $y' = \frac{-2xy - 3y}{x^2 + 3x - 10y}$

(g)
$$\cos^2(xy) = 1$$

Differentiating with respect to x : $y' = 2\cos(xy) \cdot (-\sin(xy)) \cdot (y + xy') = 0$
Then $-2y\cos(xy)\sin(xy) - [2x\cos(xy)\sin(xy))]y' = 0$,
or $-y'[2x\cos(xy)\sin(xy)] = 2y\cos(xy)\sin(xy)$
Thus $y' = \frac{2y\cos(xy)\sin(xy)}{-2x\cos(xy)\sin(xy)} = -\frac{y}{x}$

2. Use the formal limit definition of the derivative to find the derivative of the following:

(a)
$$f(x) = x^2 - 3x$$

$$f'(x) = \lim_{h \to 0} \frac{(x+h)^2 - 3(x+h) - x^2 + 3x}{h} = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 3x - 3h - x^2 + 3x}{h}$$

$$= \lim_{h \to 0} \frac{2xh + h^2 - 3h}{h} = \lim_{h \to 0} 2x + h - 3 = 2x - 3$$

(b)
$$f(x) = \frac{2}{x-3}$$

$$f'(x) = \lim_{h \to 0} \frac{\frac{2}{x+h-3} - \frac{2}{x-3}}{h} = \lim_{h \to 0} \frac{\frac{2(x-3)-2(x+h-3)}{(x+h-3)(x-3)}}{h}$$

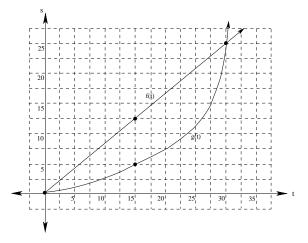
$$= \lim_{h \to 0} \frac{2x-6-2x-2h+6}{(x+h-3)(x-3)} \frac{1}{h}$$

$$= \lim_{h \to 0} \frac{-2h}{(x+h-3)(x-3)} \frac{1}{h} = \lim_{h \to 0} \frac{-2}{(x+h-3)(x-3)} = \frac{-2}{(x-3)^2}$$
(c) $f(x) = \sqrt{x-2}$

$$f'(x) = \lim_{h \to 0} \frac{\sqrt{x+h-2} - \sqrt{x-2}}{h} \cdot \frac{\sqrt{x+h-2} + \sqrt{x-2}}{\sqrt{x+h-2} + \sqrt{x-2}}$$

$$f'(x) = \lim_{h \to 0} \frac{\sqrt{x+h-2} - \sqrt{x-2}}{h} \cdot \frac{\sqrt{x+h-2} + \sqrt{x-2}}{\sqrt{x+h-2} + \sqrt{x-2}}$$
$$= \lim_{h \to 0} \frac{x+h-2-x+2}{h(\sqrt{x+h-2} + \sqrt{x-2})} = \lim_{h \to 0} \frac{h}{h(\sqrt{x+h-2} + \sqrt{x-2})} = \frac{1}{2\sqrt{x-2}}$$

3. The position of two cars, car A and car B, both starting side by side on a straight road, is given by f(t) and g(t), where f(t) is the distance traveled car A in feet, and g(t) is the distance traveled car B in feet, and t is in minutes (see the graph below):



(a) How fast is car A going at time t = 15?

To find the speed of car A at time t=15, we need to find the slope of the tangent line to f(t) when t=15. From the graph, $m=\frac{12.5}{15}=\frac{5}{6}$ feet per minute.

(b) Find the average rate of change of car B on the time interval [0, 15].

The average rate of change of car B on the time interval [0,15] is given by the slope of the secant line to g(t), which is given by $v_{av} = \frac{5}{15} = \frac{1}{3}$ feet per minute.

(c) Which car is traveling faster at time t = 15?

We are comparing the instantaneous velocities of the two cars when t = 15. From the graph, we see that the tangent line to f(t) is steeper than the tangent line to g(t) when t = 15, so car A is going faster at that time.

(d) Which car is traveling faster at time t = 30?

We are comparing the instantaneous velocities of the two cars when t = 30. From the graph, we see that the tangent line to g(t) is steeper than the tangent line to f(t) when t = 30, so car B is going faster at that time.

(e) What can you say about the relative positions of the two cars at time t = 30?

Since the cars have driven the same distance, they are still side by side.

4. Use the quotient rule to derive the formula for the derivative of tan(x).

Notice that
$$f(x) = \tan x = \frac{\sin x}{\cos x}$$

Then, using the quotient rule:

$$f'(x) = \frac{\cos x \cdot \cos x - \sin x \cdot (-\sin x)}{\cos^2 x} = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x} = \sec^2(x).$$

Thus $\frac{d}{dx}(\tan x) = \sec^2 x$

5. Use the product rule to prove that $D_x[f(x)g(x)h(x)] = f'(x)g(x)h(x) + f(x)g'(x)h(x) + f(x)g(x)h'(x)$

We'll use the product rule twice:

$$D_x[(f(x)g(x)) h(x)] = D_x[f(x)g(x)]h(x) + (f(x)g(x)) \cdot h'(x)$$

= $[f'(x)g(x) + f(x)g'(x)]h(x) + f(x)g(x)h'(x) = f'(x)g(x)h(x) + f(x)g'(x)h(x) + f(x)g(x)h'(x)$

6. If $f(x) = \sqrt{3x - 5}$, find the intervals where f(x) is continuous, and find the intervals where f(x) is differentiable.

Recall that f(x) is the square root of a polynomial, so it is continuous wherever it is defined. That is, whenever $3x - 5 \ge 0$, or when $x \ge \frac{5}{3}$.

Thus f(x) is continuous on $\left[\frac{5}{3}, \infty\right)$

Next,
$$f'(x) = \frac{1}{2}(3x - 5)^{-\frac{1}{2}}(3) = \frac{3}{2\sqrt{3x - 5}}$$

Then f'(x) is defined when 3x-5>0, or when $x>\frac{5}{3}$, so f(x) is differentiable on $(\frac{5}{3},\infty)$

7. If $f(x) = 3x^4 - 5x^2 + 7x - 12$, use differentials to approximate f(1.1)

Let x = 1 and $\Delta x = .1$. Notice that $f'(x) = 12x^3 - 10x + 7$, so f'(1) = 12 - 10 + 7 = 9, and f(1) = 3 - 5 + 7 - 12 = 10 - 17 = -7

Then
$$f(1.1) \approx f(1) + f'(1)\Delta x = -7 + 9(.1) = -7 + .9 = -6.1$$

8. Use differentials to approximate $\sqrt{1.2}$. How good is your approximation?

Let
$$f(x) = \sqrt{x}$$
. Then $f'(x) = \frac{1}{2\sqrt{x}}$.

Let x=1 and $\Delta x=.2$. Then, using the linear approximation formula:

$$f(1.2) \approx f(1) + f'(1)\Delta x = 1 + \frac{1}{2} \cdot (.2) = 1.1$$

Notice that using a calculator, $\sqrt{1.2} \approx 1.095445$, so if we believe our calculator, our approximation using the tangent line to f when x=1 is good to within about .004556.

9. Use differentials to estimate $\sqrt[3]{9}$. How good is your approximation?

Let $f(x) = x^{\frac{1}{3}}$, x = 8, and $\Delta x = 1$.

Then
$$f'(x) = \frac{1}{3}x^{-\frac{2}{3}} = \frac{1}{3x^{\frac{2}{3}}}$$
.

Therefore, $f(8) = \sqrt[3]{8} = 2$, and $f'(8) = \frac{1}{3 \cdot 8^{\frac{2}{3}}} = \frac{1}{3(4)} = \frac{1}{12}$.

Thus
$$f(9) \approx f(8) + f'(8)\Delta x = 2 + \frac{1}{12} = \frac{25}{12} \approx 2.08333$$

Notice that $\sqrt[3]{9} \approx 2.08008$, so our approximation in within 33 ten-thousandths.

10. Suppose helium is being pumped into a spherical balloon at a rate of 4 cubic feet per minute. Find the rate at which the radius is changing when the radius is 2 feet.

Recall that the volume of a sphere of radius r is given by $V = \frac{4}{3}\pi r^3$. In the situation described, both V and r are functions of time t in minutes.

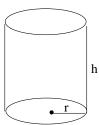
Then, differentiating implicitly, $\frac{dV}{dt} = 4\pi r^2 \frac{dr}{dt}$.

We also know that $\frac{dV}{dt} = 4\frac{ft^3}{min}$ and r = 2 feet.

Thus
$$4 = 4\pi(4)\frac{dr}{dt}$$
, so $\frac{dr}{dt} = \frac{4}{16\pi} = \frac{1}{4\pi}\frac{ft}{min}$.

11. Dr. Von Klausen has just invented a shrink ray and decides to try it out on a test object: a cylinder whose height is twice its radius. The shrink ray has been calibrated so that the proportions of the cylinder remain the same throughout the test. A few seconds into the test, the radius of the cylinder is decreasing at 2 inches per second, and the height is 4 inches. At what rate is the volume of the cylinder changing at that time? (Be sure to include units in your answer)

Recall that the volume of a cylinder is given by: $V = \pi r^2 h$



Here, h = 2r and h = 4, so r = 2. Also, $\frac{dr}{dt} = -2$ inches per second.

Substituting h = 2r into the main volume equation, we get $v = 2\pi r^3$.

Differentiating implicitly: $\frac{dV}{dt} = 6\pi r^2 \frac{dr}{dt} = 6\pi (2^2)(-2) = -48\pi$ cubic inches per second.

12. Find the equation of the tangent line to the graph of $f(x) = \tan(4x)$ when $x = \frac{3\pi}{16}$

$$f'(x) = 4\sec^2(4x) = \frac{4}{\cos^2(4x)}$$
. Therefore $f'(\frac{3\pi}{16}) = \frac{4}{\cos^2(\frac{12\pi}{16})} = \frac{4}{\left(\frac{-\sqrt{2}}{2}\right)^2} = \frac{4}{\frac{1}{2}} = 8$,

and
$$f(\frac{3\pi}{16}) = \tan(\frac{3\pi}{4}) = -1$$
.

Then the tangent line to f(x) when $x = \frac{3\pi}{16}$ has slope 8 and goes through the point $\left(\frac{3\pi}{16}, -1\right)$

Hence the tangent line has equation $y + 1 = 8\left(x - \frac{3\pi}{16}\right)$ so $y = 8x - \frac{3\pi}{2} - 1$

13. Find the equation of the tangent line to the graph of $y = \sec(2x)$ when $x = \frac{\pi}{6}$.

$$y' = 2\sec(2x)\tan(2x) = \frac{2\sin(2x)}{\cos^2(2x)}$$

$$m = \frac{2\sin\left(\frac{\pi}{3}\right)}{\cos^2\left(\frac{\pi}{3}\right)} = \frac{2\left(\frac{\sqrt{3}}{2}\right)}{\left(\frac{1}{2}\right)^2} = 4\sqrt{3}$$

$$y = \sec \frac{\pi}{3} = \frac{1}{\cos(\frac{\pi}{3})} = \frac{1}{\frac{1}{2}} = 2$$

Therefore, the equation of the tangent line is given by: $y-2=4\sqrt{3}\left(x-\frac{\pi}{6}\right)$,

or
$$y = 4\sqrt{3}x - \frac{2\sqrt{3}\pi + 6}{3}$$

- 14. Find the points on the graph of $y=2x^3+3x^2-72x+5$ at which the tangent line is horizontal. Let y=f(x). Then $f'(x)=6x^2+6x-72=6(x^2+x-12)$, so the points at which the tangent line is horizontal occur when $x^2+x-12=0$, or when (x+4)(x-3)=0, that is, when x=-4, and x-3. Notice that $f(-4)=2(-4)^3+3(-4)^2-72(-4)+5=213$, and $f(3)=2(3)^3+3(3)^2-72(3)+5=-130$ Hence the points on the graph of y=f(x) with horizontal tangent lines are: (-4,213) and (3,-130).
- 15. Find the equation of the tangent line to the graph of the relation $x^2y + 3y^2 = 3x 7$ at the point (2, -1)

Differentiating implicitly: $2xy + x^2y' + 6yy' = 3$, so $y'(x^2 + 6y) = 3 - 2xy$

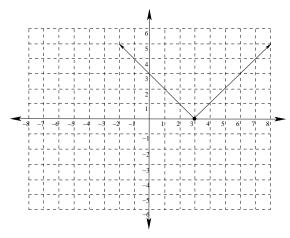
Thus $y' = \frac{3 - 2xy}{x^2 + 6y}$. Evaluating when x = 2 and y = -1,

$$m = \frac{3 - 2(2)(-1)}{2^2 + 6(-1)} = \frac{3 + 4}{-2} = -\frac{7}{2}.$$

Then the equation for the tangent line is given by: $y+1=-\frac{7}{2}(x-2)$, or $y=-\frac{7}{2}x+6$.

16. Draw the graph of a function f(x) that is continuous when x = 3, but is not differentiable when x = 3.

There are many possible examples. One possibility is:



- 17. Find g'(2) if h(x) = f(g(x)), f(3) = -2, g(2) = 3, f'(3) = 5, and h'(2) = -30. Using the Chain Rule, h'(x) = f'(g(x))g'(x), so h'(2) = f'(g(2))g'(2) = f'(3)g'(2). Therefore, -30 = 5g'(2), so -6 = g'(2).
- 18. Given that f(2) = -3, g(2) = 2, $f'(2) = \frac{1}{2}$, g'(2) = -5, and h(x) = f(g(x)). Find the following:

(a)
$$(f-g)'(2)$$

$$= f'(2) - g'(2) = \frac{1}{2} - (-5)$$
(b) $(fg)'(2)$

$$= f'(2)g(2) + f(2)g'(2) = \left(\frac{1}{2}\right)(2) + (-3)(-5)$$

$$= \frac{1}{2} + 5 = \frac{11}{2} = 5.5$$

$$= 1 + 15 = 16$$

(c)
$$\left(\frac{f}{g}\right)'(2)$$
 (d) $h'(2)$

$$= \frac{f'(2)g(2) - f(2)g'(2)}{[g(2)]^2} = f'(g(2))g'(2) = f'(2)g'(2)$$

$$= \frac{\left(\frac{1}{2}\right)(2) - (-3)(-5)}{2^2} = \frac{1 - 15}{4} = -\frac{7}{2} = \left(\frac{1}{2}\right)(-5) = -2.5$$

19. Find $f^{(8)}(x)$ if $f(x) = \sin(2x)$

Notice that $f'(x) = 2\cos(2x)$

Continuing in this fashion, $f^{(8)}(x) = 2^8 \sin(2x) = 256 \sin(2x)$.

20. Find $f^{(13)}(x)$ if $f(x) = x^{12} + 7x^5 - 3x^3 - 1$

Since the highest exponent is 12, and differentiation using the power rule lowers the exponent of each term by one, then $f^{(13)}(x) = 0$.

21. Use linearization to find a good approximation of $\sqrt[3]{10}$.

There are several ways that we could accomplish this. Here is one possibility:

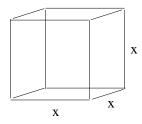
Let $f(x) = \sqrt[3]{x+8}$ and let a = 0. Then $f'(x) = \frac{1}{3}(x+8)^{-\frac{2}{3}}$, so $f'(0) = \frac{1}{3}(8)^{-\frac{2}{3}} = \frac{1}{3} \cdot \frac{1}{4} = \frac{1}{12}$. Also note that $f(0) = \sqrt[3]{8} = 2$.

Therefore, $L(x) = 2 + \frac{1}{12}x$. If we wish to approximate $\sqrt[3]{10}$, we must set x = 2.

$$L(2) = 2 + \frac{1}{12}(x) = 2 + \frac{1}{6} = \frac{13}{6}.$$

Note that $\frac{13}{6} \approx 2.16667$, while $\sqrt[3]{10} \approx 2.15443$, so we appear to be getting a decent approximation.

22. A company manufactures wooden cubes. Each side of the finished cubes are 5 inches long, with a maximum error of \pm .2 inches per side. Use differentials to estimate the maximum error in the volume of the cube. Then, compare your estimate with the error in volume of a cube with largest possible volume manufactured within the given error tolerances.



The volume of a cube is given by $V=x^3$. Then $dV=3x^2\Delta x$ can be used to approximate the error in volume. Here, x=5 inches, and $\Delta x=\pm .2$ inches.

Hence $\Delta V \approx dV = 3x^2 \Delta x = 3(5^2)(\pm .2) = \pm 15$ cubic inches.

A perfectly constructed cube would have a volume $v = 5^3 = 125$ cubic inches.

Then, according to our estimate using differentials, $110 \le V \le 140$ is the error range for the volume of the manufactured cubes.

In reality, the biggest possible cube would have sides all of length 5.2 inches, or a volume of $(5.2)^3 = 140.608$ cubic inches. So our estimate for the maximum error is pretty close to the actual maximum error.