Show all work for credit.

1. Approximate a real root of the following function using Newton's method. Give your answer to six decimal places. Show your work, including your initial guess and all intermediate results.

 $f(x) = 8x^3 - 9x^2 + 12x - 15$

2. Consider $\sqrt{21}$.

- (a) What function would you choose if you wanted to use Newton's method to approximate $\sqrt{21}$?
- (b) Approximate $\sqrt{21}$ using this function. Show your work, including your initial guess and all intermediate results.

3. What single function would you use to approximate $\sqrt{21} + \sqrt{37}$ using Newton's method?

4. Find a general antiderivative F(x) for each of the following functions.

(a)
$$f(x) = 3x^2 + 2x + 1$$
 (b) $f(x) = 5 \sin x$

(c)
$$f(x) = \sin(5x)$$
 (d) $f(x) = \tan^2(x)$

5. Evaluate each of the following integrals.

(a)
$$\int \left(\frac{3}{t^3} + 2t + 1\right) dt$$
 (b) $\int \frac{x^2 - 2x + 5}{\sqrt{x}} dx$

(c)
$$\int (2x+3)^2 dx$$
 (d) $\int \frac{1}{\sin^2 y} dy$

(e)
$$\frac{d}{dx} \int (x^2 + 4)^5 dx$$
 (f) $\int \frac{d}{dx} (\tan(x^2 + 7)) dx$

(g)
$$\int k^3 dx =$$
 (h) $\int k^3 dk =$

6. Solve the differential equation subject to the given conditions.

(a)
$$f'(x) = x^2 + x$$
; $f(0) = 4$

(b)
$$\frac{dy}{dx} = \frac{1}{\sqrt{3x+1}}; y = 2$$
 when $x = 1$

7. Jill throws a rock straight upward from ground level alongside a tree. The rock rises until it is even with the top of the tree then falls back to the ground. It remains aloft for 4 seconds. How tall is the tree? (Gravity produces a constant acceleration of $32 \ ft/sec^2$.)