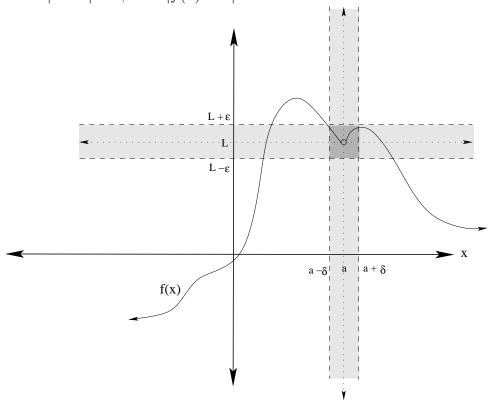
The Definition of a Limit Handout

Definition: Let f be a function defined on an open interval containing a, except possibly at a itself, and let L be a real number. The statement $\lim_{x\to a} f(x) = L$ means that for every $\epsilon > 0$ there is a $\delta > 0$ such that if $0 < |x - a| < \delta$, then $|f(x) - L| < \epsilon$.



Example 1: Let $f(x) = \sqrt[3]{x-1}$ and let a=9 and L=2. Let $\epsilon=.001$. Find $\delta>0$ such that if $0<|x-a|<\delta$, then $|f(x)-L|<\epsilon$.

Solution: We need $|\sqrt[3]{x-1}-2| < .001$. That is, $-.001 < \sqrt[3]{x-1}-2 < .001$ or $1.999 < \sqrt[3]{x-1} < 2.001$. Cubing both sides, we obtain: 7.988006 < x - 1 < 8.012006, or 8.988006 < x < 9.012006.

Notice 9 - 8.988006 = .011994, while 9.012006 - 9 = .012006. Therefore, taking $\delta = .01$ will suffice. That is, if 0 < |x - 9| < .01 (or 8.99 < x < 9.01), then $|\sqrt[3]{x - 1} - 2| < .001$

Example 2: Use the definition of the limit of a function to prove that $\lim_{x\to 2} 5 - 2x = 1$

Let $\epsilon > 0$. Suppose that $|f(x) - L| < \epsilon$.

Then $|5 - 2x - 1| = |4 - 2x| < \epsilon$.

But then $2|2-x| = 2|x-2| < \epsilon$, so $|x-2| < \frac{\epsilon}{2}$.

Therefore, let $\delta \leq \frac{\epsilon}{2}$, and suppose $0 < |x-2| < \delta$.

Then $2|x - 2| = 2|2 - x| < 2\delta \le \epsilon$.

Therefore $|4 - 2x| = |5 - 2x - 1| < \epsilon$, or $|f(x) - 1| < \epsilon$.

Thus $\lim_{x\to 2} 5 - 2x = 1$