
Math 261
Newton’s Method Handout

Example: Let f(x) = 2x3 − 6x + 1. Notice that f(x) is a continuous function with f(0) = 1 and
f(1) = 2− 6 + 1 = −3. Therefore, by the Intermediate Value Theorem, f(x) must have a zero somewhere
between 0 and 1. Our goal is to approximate this zero.

To sketch the graph of f(x), note that f ′(x) = 6x2 − 6, which has critical numbers when 6x2 = 6, or
x2 = 1. That is, when x = ±1.

This leads to the sign chart:

So f(x) is increasing on (−∞,−1] ∪ [1,∞) and decreasing on [−1, 1].

Similarly, f ′′(x) = 12x, which has one critical value, x = 0. Notice that f ′′(x) < 0 when x < 0 and
f ′′(x) > 0 when x > 0.

If we also note that f(−1) = 5 is a local max and f(1) = −3 is a local min, then we have the following
graph for f(x):

To find the zero of f(x) on [0, 1], we begin with an initial guess of x = 1
2
and consider the tangent line to

f(x) at this point.

Notice that f ′
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Also, f
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Therefore, an equation for the tangent line to f(x) at the point
(
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,−7
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is y + 7
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= −9

2

(

x− 1
2

)

or y =
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. Which, in slope intercept form is: y = −9

2
x+ 1

2
.

We now find the x-intercept of this line: If y = 0, 9
2
x = 1

2
, so x = 1

2
· 2
9
= 1

9
.

We claim that if we set x1 =
1
9
, then x1 is a better approximation of the zero of f(x) in the interval [0, 1].

What if we repeated this process to find x2 based on our previous approximation x1 =
1
9
? We claim that

this would get a still better approximation of the zero e are looking for.

However, having to redo similar computations several times is both tedious and unnecessary. We can
develop a procedure that will help us find our next guess more directly as follows:



Suppose that y − f(xn) = f ′(xn)(x− xn) is a tangent line to f(x) at the point associated to the approxi-
mation xn, and suppose that this tangent line has x-intercept (xn+1, 0). Then, setting x = xn+1 and y = 0,
we have:

−f(xn) = f ′(xn)(xn+1 − xn), or −f(xn) = f ′(xn)xn+1 − f ′(xn)xn.

Therefore, −f(xn) + f ′(xn)xn = f ′(xn)xn+1.

Hence −f(xn)+f ′(xn)xn

f ′(xn)
= xn+1

That is, xn+1 =
−f(xn)
f ′(xn)

+ f ′(xn)xn

f ′(xn)
.

Thus xn+1 = xn − f(xn)
f ′(xn)

.

This gives us the framework we need to carry out Newton’s Method.

Newton’s Method:

1. Let x0 be an initial guess about the value of a root of a differentiable function f(x) (a solution to
the equation f(x) = 0).

2. Use the following formula to find additional approximations:

xn+1 = xn − f(xn)
f ′(xn)

.

Continuing our example from above: If f(x) = 2x3 − 6x+ 1, then f ′(x) = 6x2 − 6. We took x0 =
1
2
.

Using the formula for Newton’s method, we see that x1 = 1
2
− f( 1
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Continuing in this way, we find that x2 ≈ 0.167824, x3 ≈ 0.167824 and x4 ≈ 0.168254.

Example: Use a polynomial function and Newton’s Method to approximate 3
√
5.

To find a function f(x) that has 3
√
5 as a root, suppose x− 3

√
5 = 0. Then x = 3

√
5, so x3 = 5. Therefore,

let f(x) = x3 − 5. Notice that f ′(x) = 3x2. Since we know that 1 = 3
√
1 <

3
√
5 <

3
√
8 = 2, we take x0 = 2

as our initial guess.

To complete this example, use Newton’s Method to find x1, x2, ... x5 (How do we know when to stop?).


