Math 143 Radian Angle Measure

I. Converting Between Degree and Radian Measure

Recall that $360^\circ = 2\pi$ radians, so $180^\circ = \pi$ radians.

Therefore, to convert from degrees to radians, we multiply by the conversion factor: $\frac{\pi rad}{180^{\circ}}$.

Similarly, to convert from radians to degrees, we multiply by the conversion factor: $\frac{180^{\circ}}{\pi \text{rad}}$.

Examples:

Suppose $\theta = 50^{\circ}$. Then $\theta = 50^{\circ} \cdot \frac{\pi \operatorname{rad}}{180^{\circ}} = \frac{50\pi}{180} = \frac{5\pi}{18}$ radians. Suppose $\theta = \frac{7\pi}{4}$ radians. Then $\theta = \frac{7\pi}{4} \cdot \frac{180^{\circ}}{\pi \operatorname{rad}} = \frac{7 \cdot 180}{4} = 7 \cdot 45 = 315^{\circ}$

Note: Two other useful formulas involving radian measure relate the central angle θ , the radius of a sector of a circle r, the length of the arc bounding the sector s, and the area of the sector A.

They are: $s = r \cdot \theta$ and $A = \frac{1}{2}r^2\theta$. Be careful though! These formulas only work properly when θ is measured in radians.

II. Key Angles in Degree and Radian Measure

III.	Special	Values	of	Trigonometric	Functions
	-			0	

θ (radians)	θ (degrees)	$\sin \theta$	$\cos \theta$	$\tan \theta$	$\cot heta$	$\sec \theta$	$\csc \theta$
$\frac{\pi}{6}$	30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	$\sqrt{3}$	$\frac{2\sqrt{3}}{3}$	2
$\frac{\pi}{4}$	45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	1	$\sqrt{2}$	$\sqrt{2}$
$\frac{\pi}{3}$	60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{\sqrt{3}}{3}$	2	$\frac{2\sqrt{3}}{3}$