Definition: A function f is **continuous** at an interior point c of its domain if:

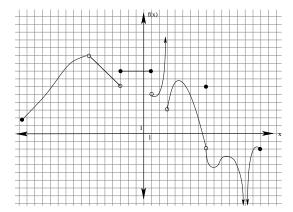
- f(c) is defined
- $\lim_{x \to c} f(x)$ exists
- $\bullet \lim_{x \to c} f(x) = f(c)$

A function f is **continuous** at a left endpoint a or a right endpoint b of its domain if:

- f(a) is defined, $\lim_{x\to a^+} f(x)$ exists, and $\lim_{x\to a^+} f(x) = f(a)$.
- f(b) is defined, $\lim_{x \to b^-} f(x)$ exists, and $\lim_{x \to b^-} f(x) = f(b)$.

Notes:

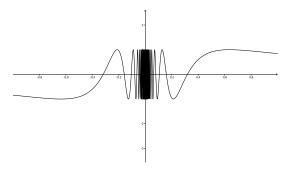
- We really only need to check the third condition, since the first two are implied by the third.
- If one (or more) of the three conditions in the definition above are not satisfied, we say that f is **discontinuous** at the corresponding value or that f has a **discontinuity** at that value.
- We can extend the definition above to say that a function f(x) is continuous on an open interval (a,b) if it is continuous at every interior point if this interval. We can further extend it to say that a function f(x) is continuous on a closed interval [a,b] is it is continuous at every interior point and is continuous at both endpoints as well.



We often classify discontinuities as one of four main types.

- 1. If $\lim_{x\to c} f(x)$ exists but f(c) is undefined or attains a different value, we say that f has a **removable discontinuity** at c. This is due to the fact that redefining the value of f(c) would make f continuous at c, thereby "removing" the discontinuity at this input value. Take a moment to identify the input values that exhibit this type of discontinuity in the figure above.
- 2. If $\lim_{x\to c^-} f(x) \neq \lim_{x\to c^+} f(x)$, we day that f has a **jump discontinuity** at c. Take a moment to identify the input values that exhibit this type of discontinuity in the figure above.
- 3. If either $\lim_{x\to c^-} f(x)$ or $\lim_{x\to c^+} f(x)$ attains an infinite value $(\infty \text{ or } -\infty)$, then we say that f has an **infinite discontinuity** at c. Take a moment to identify the input values that exhibit this type of discontinuity in the figure above.

4. The fourth type of discontinuity that can occur is a bit harder to explain. It is often called discontinuity due to **oscillation**. To see an example of this type of discontinuity, consider the graph of the function $f(x) = \sin\left(\frac{1}{x}\right)$ at x = 0.



Useful Facts:

• A polynomial function f(x) is continuous at every real number c.

• A rational function $q(x) = \frac{f(x)}{g(x)}$ where f and g are polynomials is continuous at every number c for which $g(c) \neq 0$.

Theorem 8: If f(x) and g(x) are continuous at x = c, then the following are also continuous at x = c:

• the sum (f+g)(x)

• the product (fg)(x)

• the difference (f-g)(x)

• the quotient $\left(\frac{f}{g}\right)(x)$, provided $g(c) \neq 0$

• $k \cdot f(x)$ for any constant k.

• $[f(x)]^n$ for any positive integer n.

• $\sqrt[n]{f(x)}$ for any positive integer n (assuming f(x) is positive on an interval containing c when n is even).

Theorem 10: If $\lim_{x\to c}g(x)=b$ and f is continuous at b, then $\lim_{x\to c}f(g(x))=f(b)=f\left(\lim_{x\to c}g(x)\right)$

Theorem 9: If g is continuous at c and if f is continuous at b = g(c), then

- $\lim_{x \to c} f(g(x)) = f\left(\lim_{x \to c} g(x)\right) = f(g(c))$
- the composite function $f \circ g$ is continuous at c.

The Intermediate Value Theorem: If f is continuous on a closed interval [a, b] and if w is any number between f(a) and f(b), then there is at least one number c in [a, b] such that f(c) = w.

Example: