Math 261 Definite Integrals Handout

Approximating Area Using Partitions:

Given a function f on an interval [a, b], we can approximate area using partitions that do not necessarily have rectangles all of the same width. A partition P of the interval [a, b] of size n is a set of numbers $a = x_0 < x_1 < x_2 < ... < x_{n-1} < x_n = b$. $\Delta x_k = x_k - x_{k-1}$ is the width of the kth subinterval, and ||P||, the norm of the partition P, is the width of the widest of all the subintervals in P.

The Riemann sum of f on [a, b] for a partition P is $R_P = \sum_{k=1}^{n} f(w_k) \Delta x_k$, where w_k is some point in the kth subinterval of the partition P.

If $\lim_{\|P\|\to 0} \sum_{k=1}^{n} f(w_k) \Delta x_k = J$ for some real number J, then we say that f is integrable on [a, b], and the definite integral of f on [a, b] is:

$$\int_{a}^{b} f(x)dx = \lim_{\|P\| \to 0} \sum_{k=1}^{n} f(w_k)\Delta x_k = J$$

Theorem 1 – **Integrability of Continuous Functions:** If a function f is continuous over the interval [a, b] then f is integrable over [a, b]. Similarly, if f has at most finitely any jump discontinuities and no other discontinuities on [a, b], then f is integrable over [a, b].

Proof: The proof of this Theorem is beyond the scope of this course.

Properties of Definite Integrals

1. $\int_{a}^{b} c \, dx = c(b-a)$ 2. $\int_{a}^{a} f(x) \, dx = 0$ 3. $\int_{a}^{b} f(x) \, dx = -\int_{b}^{a} f(x) \, dx$ 5. $\int_{a}^{b} f(x) \pm g(x) \, dx = \int_{a}^{b} f(x) \, dx \pm \int_{a}^{b} g(x) \, dx$ 6. $\int_{a}^{b} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{c}^{b} f(x) \, dx$

7. If f has a maximum value M on [a, b] and a minimum value m on [a, b], then $m \cdot (b - a) \leq \int_{a}^{b} f(x) dx \leq M \cdot (b - a)$.

- 8. If f is integrable on [a, b] and $f(x) \ge 0$ for every x in [a, b], then $\int_a^b f(x) \, dx \ge 0$
- 9. If f and g are integrable on [a, b] and $f(x) \ge g(x)$ for every x in [a, b], then $\int_a^b f(x) \, dx \ge \int_a^b g(x) \, dx$

Definitions: Let y = f(x) be a function that is non-negative and integrable on an interval [a, b]. Then the **area under the curve** y = f(x) **over** $[\mathbf{a}, \mathbf{b}]$ is the definite integral of f from a to b: $A = \int_{a}^{b} f(x) dx$.

Let f be a function that is integrable on an interval [a, b]. Then the **average value** of f over [a, b] is $av(f) = \frac{1}{b-a} \int_{a}^{b} f(x) dx$. The Mean Value Theorem for Definite Integrals:

If f is continuous on [a, b], then there is a number c in the open interval (a, b) such that $f(c) = \frac{1}{b-a} \int_a^b f(x) \ dx$