Show all work for credit. Also, give exact answers unless otherwise noted.

1. Find the derivative of each of the following functions. Simplify your answers completely.

(a)
$$f(x) = \sqrt{x^2 + 1}$$
 (b) $f(x) = \sin\left(\sqrt{x^2 + 1}\right)$

(c)
$$f(\theta) = \frac{2 \tan \theta}{(5\theta + 1)^3}$$
 (d) $f(x) = \tan(x^3)$

(e)
$$f(x) = \tan^3(x)$$
 (f) $f(x) = \tan^3(x^3)$

(g)
$$y = (3x - 7)^3 (5x^2 - 3x + 2)^5$$
 (h) $f(x) = \sec(3x)\sin(3x)$

(i) $f(x) = 3\cos(\cot x)$

(j)
$$f(x) = \frac{2x\cos(x^2)}{\sin 3x}$$

2. Find the following higher order derivatives. Simplify your answers completely.

(a) Find
$$f''(x)$$
 if $f(x) = (x^3 - 1)^3$ (b) Find $f''(x)$ if $f(x) = \cos(3x)\cot(x)$

(c) Find
$$f'''(x)$$
 if $f(x) = \frac{4x-3}{x+1}$ (d) Find $f^{(5)}(x)$ if $f(x) = \sin 2x$

3. Assuming that each equation determines a differentiable function f such that y = f(x), find f'(x).

(a)
$$y^2 + x^2 = 2x + 3y^2$$
 (b) $2xy = x^2 - \sqrt{y}$

(c)
$$x \sin y + y \sin x = 1$$
 (d) $x^2 (x - y)^2 = x^2 - y^2$

(e) Find y'' in part (a)

(f) Find y'' in part (c)

- 4. Find an equation for the tangent line to the graph of $(x^2 + y^2)^2 = 50xy$ at the point (2,4).
- 5. Assume $t^2v^3 = 1$ determines a function v = f(t). Use implicit differentiation to show that $v''(t) = \frac{10}{9}v^4$.