- 1. Assume that $\int_2^5 2f(x)dx = 6$, $\int_{-1}^2 f(x)dx = 11$, $\int_{-1}^5 g(x)dx = 8$, and $\int_2^5 g(x)dx = 3$. Find
 - (a) $\int_{2}^{5} f(x)dx$

(b) $\int_{-1}^{5} f(x)dx$

(c) $\int_{5}^{2} g(x)dx$

(d) $\int_{-1}^{2} g(x)dx$

(e) $\int_{2}^{5} [3f(x) - 2g(x)] dx$

(f) $\int_{-1}^{5} \left(\frac{g(x) - f(x)}{7} \right) dx$

(g) Assume f and g are continuous on [-1,5]. Find the average value of 2g+f on [-1,5].

2. If $\int_{-1}^{3} g(x)dx = \frac{\pi}{2}$, find each of the following.

(a)
$$\int_{3}^{-1} g(x)dx$$

(b)
$$\int_{-1}^{3} 6g(t)dt$$

(c)
$$\int_{-1}^{3} -g(x)dx$$

(d)
$$\int_{-1}^{3} \frac{2g(x)}{\pi} dx$$

3. Graph each integrand and use the geometric area to evaluate each definite integral.

(a)
$$\int_{-1}^{3} (3x+5) dx$$

(b)
$$\int_{-2}^{2} 5 + \sqrt{4 - x^2} \ dx$$
.

4. Given that $\int_a^b c \ dx = c(b-a)$, $\int_a^b x \ dx = \frac{b^2}{2} - \frac{a^2}{2}$, and $\int_a^b x^2 \ dx = \frac{b^3}{3} - \frac{a^3}{3}$, evaluate the following integrals.

(a)
$$\int_{2}^{\sqrt{5}} x \ dx$$

(b)
$$\int_{3}^{\frac{7}{2}} 12t^2 dt$$

(c)
$$\int_3^5 x^2 - 3x + 7 \ dx$$

(d)
$$\int_0^{\sqrt{2}} u - \sqrt{2} \ du$$