
Math 450
Section 5.4: Runge-Kutta Methods

Main Idea: Our goal is to develop methods that approximate solutions to a well posed initial value problem with O(hn)
truncation error but that do not require computing higher order derivatives of y′ = f(t, y). One theoretical tool that we will
need to accomplish this is Taylor’s Theorem for functions of two variables.

Theorem 5.13: Taylor’s Theorem Suppose f(t, y) and all of its partial derivatives of order ≤ n + 1 are continuous on
D = {(t, y) | a ≤ t ≤ b, c ≤ y ≤ d} and let (t0, y0) ∈ D. For every (t, y) ∈ D, there is a z between t and t0 and a µ between y

and y0 with f(t, y) = Pn(t, y) +Rn(t, y), where
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We call Pn(t, y) the nth degree Taylor Polynomial in two variables for f(t, y) about (y0, t0), and Rn(t, y) is the remainder
term.

Note: The maple command mtaylor can be used to compute Taylor Polynomials in more than one variable.

With this theorem in hand, we can derive new approximation methods. We will begin with a second order method. Recall
the second order Taylor Method from last section involved the term:

T (2)(t, y) = f(t, y) +
h

2
f ′(t, y).

In order to find our new method (which will not require derivative computations), we need to find parameters a1, α1, and β1

such that a1f(t+ α1, y + β1) approximates T (2)(t, y) with a truncation error that is at worst O(h2).

Notice that, by the chain rule, f ′(t, y) = df
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We compare this to the first degree Taylor Polynomial in 2-variables for a1f(t+ α1, y + β1):
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Comparing coefficients in (∗) and (∗∗) above gives: a1 = 1, a1α1 = h
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second order partials are bounded, the truncation error for this approximation is O(h2).

Note: The result of this derivation is the following 2nd order Runge-Kutta approximation method.

The Midpoint Method: Given a well posed initial value problem y′ = f(t, y), y(a) = α, we use the following procedure:
w0 = α

wi+1 = wi + hf
(
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)

, for each i = 0, 1, · · · , N − 1.



Note: In the interest of time, we omit the details of the derivation of higher order Runge-Kutta Methods. By applying the
same method of introducing parameters and matching the coefficients of the higher order Taylor Method in one variable to
the coefficients of the Taylor Polynomial in two variables evaluated on the input associated with the introduced parameters
and matching coefficients, one can develop the following methods.

O(h2) Methods derived from T (3)(t, y):

Modified Euler’s Method: Given a well posed initial value problem y′ = f(t, y), y(a) = α, we use the following procedure:
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Heun’s Method: Given a well posed initial value problem y′ = f(t, y), y(a) = α, we use the following procedure:
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, for each i = 0, 1, · · · , N − 1.

The O(h4) Method derived from T (4)(t, y):

Runge-Kutta Order Four Method: Given a well posed initial value problem y′ = f(t, y), y(a) = α, we use the following
procedure:
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Example: Consider the initial value problem y′ = y − t2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5, we take h = 1 (so N = 2).
• Using the Midpoint Method, we have:

w0 = 0.5.

w1 = 0.5 + 1f
(

0 + 1
2 , 0.5 +

1
2f(0, 0.5)

)

= 2.5

w2 = 2.5 + 1f
(

1 + 1
2 , 2.5 +

1
2f(1, 2.5)

)

= 5.0

• Using the Modified Euler Method, we have:
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• Using the Runge-Kutta Order Four Method, we have:
w0 = 0.5.

k1 = 1.5, k2 = 2.0, k3 = 2.25, k4 = 2.75

w1 ≈ 2.625

k1 = 2.625, k2 = 2.6875, k3 = 2.71875, k4 = 2.34375

w2 ≈ 5.255208333

Note: The actual value of y(2) ≈ 5.3054720.
Using a smaller h would greatly improve the results of these approximation methods.


