1. For each of the following, determine whether the statement is True or False.

- (a) $\emptyset \subseteq \{a, b, c, d\}$ TRUE(d) $\emptyset \subseteq \{a, b, \emptyset\}$ TRUE(g) $1 \in \{0, \{1\}, \{0, 1\}\}$ FALSE(b) $\emptyset \in \{a, b, c, d\}$ FALSE(e) $\{a, b\} \subset \{a, b\}$ FALSE(h) $\{0, 1\} \in \{0, \{1\}, \{0, 1\}\}$ TRUE(c) $\emptyset \in \{a, b, \emptyset\}$ TRUE(f) $0 \in \{0, \{1\}, \{0, 1\}\}$ TRUE(i) $\{0, 1\} \subset \{0, \{1\}, \{0, 1\}\}$ FALSE
- 2. Given the set $B = \{a, b, \{a, b\}\}$
 - (a) Find |B|. |B| = 3(b) Find $\mathcal{P}(B)$ $\mathcal{P}(B) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}, \{a, b\}, \{b, \{a, b\}\}, \{a, b, \{a, b\}\}\}$
- 3. Given that $A = \{1, 2, 3\}$ and $B = \{a, b, c, d, e, f\}$
 - (a) List the elements in $A \times A$.

 $A \times A = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)\}$

(b) How many elements are in $A \times B$?

 $|A \times B| = |A| \cdot |B| = 3 \cdot 6 = 18.$

(c) How many elements are in $A \times (B \times B)$?

First notice that $|B \times B| = |B| \cdot |B| = 6 \cdot 6 = 36$.

Then $|A \times (B \times B)| = |A| \cdot |B \times B| = 3 \cdot 36 = 108.$

4. Find the set of all elements that make the predicate $Q(x): x^2 < x$ true (where the domain of x is all real numbers).

First notice that if x > 1, then $x \cdot x > 1 \cdot x$, so $x^2 > x$.

- If x < 0, then since $x^2 > 0$ for all real $x, x^2 > 0 > x$.
- If x = 0, then $0^2 = 0$. Similarly, if x = 1, then $1^2 = 1$.
- If 0 < x < 1, then $x \cdot x < 1 \cdot x$, or $x^2 < x$.

Hence the set of all elements that make the predicate $Q(x) : x^2 < x$ true is $A = \{x \mid 0 < x < 1\}$.

5. Given that $A = \{0, 2, 4, 6, 8, 10, 12\}, B = \{0, 2, 3, 5, 7, 11, 12\}$ and $C = \{1, 2, 3, 4, 6, 7, 8, 9\}$ are all subsets of the universal set $U = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$, find each of the following:

(a) $A - B = \{4, 6, 8, 1$	$\{0, 2, 3,$	$\{4, 6, 7, 8, 10, 12\}$	(f) $(A \cap$	$\cap C) \cup (B - \overline{A})$
(b) $\overline{A} = \{1, 3, 5, 7, 9, 1\}$	1} (e) $\underline{A} - (\overline{B}$	$E \oplus C$)	A ($\cap C = \{2, 4, 6, 8\}, \overline{A} =$
(c) $A \cap B = \{0, 2, 12\}$	$\overline{B} = \{1\\ \{2, 3, 7\}$	$,4,6,8,9,10\}$, so $\overline{B} \oplus C$	$' = \begin{cases} 1, 3 \\ \{0, 2\} \end{cases}$	$\{3, 5, 7, 9, 11\}$, and so $B - A = \{2, 12\}$.
(d) $A \cup (B \cap C)$	Hence	$\begin{array}{ccc} A & - & (\overline{B} \oplus C) \end{array}$	= Thu	$as (A \cap C) \cup (B - \overline{A}) =$
$B \cap C = \{2, 3, 7\}, s$	so $A \cup (B \cap C) = \{0, 4, 6, \dots, 0\}$	8,12}	$\{0, 2$	$2, 4, 6, 8, 12\}$

6. Draw Venn Diagrams representing each of the following sets:

7. Use a membership table to show that $(B - A) \cup (C - A) = (B \cup C) - A$.

A	B	C	B - A	C - A	$(B-A) \cup (C-A)$
1	1	1	0	0	0
1	1	0	0	0	0
1	0	1	0	0	0
1	0	0	0	0	0
0	1	1	1	1	1
0	1	0	1	0	1
0	0	1	0	1	1
0	0	0	0	0	0

4	B	C	$B \cup C$	$(B \cup C) - A$
1	1	1	1	0
1	1	0	1	0
1	0	1	1	0
1	0	0	0	0
0	1	1	1	1
0	1	0	1	1
0	0	1	1	1
0	0	0	0	0

Since the last columns of these membership tables are identical, these two sets are equal.

8. Use a 2-column proof to verify the set identity: $A \cup (A \cap B) = A$.

Statement	Reason
$A \cup (A \cap B)$	Given
$= \{ x \mid (x \in A) \lor [(x \in A) \land (x \in B)] \}$	Definition of union and definition of intersection.
$= \{x \mid x \in A\}$	Absorption Law for logical statements.
=A	Definition of A

The proof given in the table above verifies that these sets are equal, so this identity is always valid.

- 9. For each of the following, either prove the statement or show that it is false using a counterexample.
 - (a) (A B) C = A (B C)

FALSE. Consider the counterexample: $A = \{1, 2, 3, 4\}, B = \{2, 3, 5\}, \text{ and } C = \{3, 4, 5, 6\}.$ Then $A - B = \{1, 4\}$, so $(A - B) - C = \{1\}$, while $B - C = \{2\}$, so $A - (B - C) = \{1, 3, 4\}.$ Then $(A - B) - C \neq A - (B - C)$

(b) $A \oplus (B \oplus C) = (A \oplus B) \oplus C$

We will prove this equality using membership tables:

A	B	C	$B \oplus C$	$A \oplus (B \oplus C)$
1	1	1	0	1
1	1	0	1	0
1	0	1	1	0
1	0	0	0	1
0	1	1	0	0
0	1	0	1	1
0	0	1	1	1
0	0	0	0	0

A	B	C	$A \oplus B$	$(A \oplus B) \oplus C$
1	1	1	0	1
1	1	0	0	0
1	0	1	1	0
1	0	0	1	1
0	1	1	1	0
0	1	0	1	1
0	0	1	0	1
0	0	0	0	0

Since the last columns of these membership tables are identical, these two sets are equal.

(c) $A \cap (B - C) = (A \cap B) - (A \cap C)$

(/	(/	
A	B	C	B-C	$(A \cap (B - C))$
1	1	1	0	0
1	1	0	1	1
1	0	1	0	0
1	0	0	0	0
0	1	1	0	0
0	1	0	1	0
0	0	1	0	0
0	0	0	0	0

A	B	C	$A \cap B$	$A \cap C$	$(A \cap B) - (A \cap C)$
1	1	1	1	1	0
1	1	0	1	0	1
1	0	1	0	1	0
1	0	0	0	0	0
0	1	1	0	0	0
0	1	0	0	0	0
0	0	1	0	0	0
0	0	0	0	0	0

Since the last columns of these membership tables are identical, these two sets are equal.

- 10. Consider the function f(x) = |x|
 - (a) Suppose that the domain of this function is \mathbb{R} and the co-domain is \mathbb{R} . Find the range of f. Is f 1-1? Is f onto? Justify your answers.

Recall that if $x \ge 0$, then f(x) = x and if x < 0, then f(x) = -x. From this, we see that the range of f is $\{x : x \in \mathbb{R}, x \ge 0\}$.

Notice that f(1) = f(-1) = 1, so f is not one-to-one.

Based on the range we found, we see that f is not onto. For example, there is no x that maps to -1.

(b) Suppose that the domain of this function is \mathbb{N} and the co-domain is \mathbb{N} . Find the range of f. Is f 1-1? Is f onto? Justify your answers.

If we change the domain and co-domain to \mathbb{N} , then f has range $\{x : x \in \mathbb{N}\} = \mathbb{N}$. Thus f is onto.

With the given domain and co-domain, f is also one-to-one, since on this domain, f(x) = x for all $x \in \mathbb{N}$.

(c) Suppose $S = \{-2, -1, 0, 1, 2\}$. Find f(S) (the image of the set S under f). Find $f^{-1}(S)$ (the preimage of the set S under f).

 $f(S) = \{0, 1, 2\}$. However, since -2 and -1 are not legal images, $f^{-1}(S)$ is undefined.

- 11. For each of the following functions, determine whether f is a one-to-one. Also determine whether f is onto. Justify your answers.
 - (a) $f : \mathbb{R} \to \mathbb{R}, f(x) = x^3 x$

Notice that f(0) = f(1) = 0. Therefore, f is not one-toone. To see that f is onto, notice that $f'(x) = 3x^2 - d$ $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ $f(m, n) = m^2 - n^2$ so $f'(x) \ge 0$ whenever $|x| \ge \frac{\sqrt{3}}{3}$. From this, we can deduce that f is increasing both on $(\infty, -1]$ and on $[1, \infty)$. Also, note that $\lim_{x \to -\infty} f(x) = -\infty$ and $\lim_{x \to \infty} f(x) = \infty$.

Finally, since f(1) = 0 and f(-1) = 0, f attains all positive values in \mathbb{R} on the interval $[1,\infty)$, and f attains all negative values in \mathbb{R} on the interval $(-\infty, -1]$. Thus f is onto.

(b) $f : \mathbb{R}^+ \to \mathbb{R}^+$ $f(x) = x^2$

Notice that since we have restricted the domain to include only positive values, if f(a) = f(b), then $a^2 = b^2$, so a = b. Hence f is one-to-one.

Also, if we consider $k \in \mathbb{R}^+$ and let $x = \sqrt{k}$ (which is defined since $k \ge 0$). Then $f(x) = (\sqrt{k})^2 = k$.

(c) $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ $f(m, n) = m^2 - n$

f is not one-to-one, since f(1,1) = f(-1,1) = f(0,0) =0.

f is onto. To see this, let $k \in \mathbb{N}$. Let m = 0, and n = -k. Then f(m, n) = 0 - (-k) = k.

f is not one-to-one, since f(1,1) = f(-1,1) = f(0,0) =0.

f is not onto. To see this, let k = 6. Now, the square numbers are 0, 1, 4, 9, 16, 25, 36, ...

If we subtract consecutive squares, as we proved on a previous homework exercise, we get the odd numbers $1, 3, 5, 7, 9, 11, \cdots$

To obtain an even difference, we must subtract nonconsecutive squares. Notice that 4 - 0 = 4, 9 - 1 = 8, and 16 - 4 = 12. Since our previous result shows that the difference between perfect squares increases as their size increases, we can see that there is no way of writing 6 as a difference of two perfect squares. Hence f is not onto.

Notice that we could prove that the difference between two perfect squares is either odd or is a multiple of 4, but that goes beyond what was asked for in this problem.]

12. Prove or Disprove: Suppose $f: B \to C$ and $q: A \to B$. If f is one-to-one and q is onto, then $f \circ q$ is one to one.

This statement is false. For example, Let $A = B = C = \mathbb{N}$ consider f(n) = n and $g(n) = \lceil \frac{n}{2} \rceil$.

f is the identity map, so f is one-to-one. g is onto since g(2n) = n for all n. However, notice that $(f \circ g)(n) = g(n)$ for all n. Therefore, $f \circ g$ is not one-to-one, since $(f \circ g)(1) = (f \circ g)(2) = 1$.

13. Prove or Disprove: Suppose $f: B \to C$ and $g: A \to B$. If f is one-to-one and g is onto, then $f \circ g$ is onto.

This statement is false. For example, Let $A = B = C = \mathbb{N}$ consider f(n) = 2n and g(n) = n.

g is the identity map, so g is one-to-one. f is one-to-one since if $f(a_1) = f(a_2)$, then $2a_1 = 2a_2$, so $a_1 = a_2$. However, notice that $(f \circ g)(n) = 2n$ for all n. Therefore, $f \circ g$ is not onto, since there is no input n such that $(f \circ g)(n) = 1$.

- 14. Find the first five terms of each of the following sequences (start with n = 1):
 - (b) $b_n = (-1)^n n^2$ (c) $c_n = n^{n-1}$ (a) $a_n = 3n - 1$

 $a_1 = 2, a_2 = 5, a_3 = 8, a_4 = 11, b_1 = -1, b_2 = 4, b_3 = -9, b_4 = 16, c_1 = 1^0 = 1, c_2 = 2^1 = 2, c_3 = 3^2 = a_5 = 14$ $b_5 = -25$ $9, c_4 = 4^3 = 64, c_5 = 5^4 = 625$ (e) $b_n = b_{n-1} + n^2$, $b_0 = 7$ (f) $c_n = c_{n-1} + nc_{n-2}$, $c_0 = 2$, $c_1 = 3$ (d) $a_n = 2a_{n-1}, a_0 = 5$ $\begin{array}{ll} a_1 = 10, \ a_2 = 20, \ a_3 = 40, \ a_4 = 80, \\ a_5 = 160 \end{array} \\ \begin{array}{ll} b_1 = 7 + 1 = 8, \ b_2 = 8 + 4 = 12, \\ b_3 = 12 + 9 = 21, \ b_4 = 21 + 16 = 37, \\ b_5 = 37 + 25 = 62 \end{array} \\ \begin{array}{ll} c_1 = 3, \ c_2 = 3 + 2(2) = 7, \ c_3 = 2, \\ c_4 = 16 + 4(7) = 44, \\ c_5 = 44 + 5(16) = 124 \end{array} \\ \end{array}$

15. Find three different sequences beginning with the terms $a_1 = 1$, $a_2 = 2$ and $a_3 = 4$.

There are many possible answers to this question. Here are some possibilities:

$$a_n = 2^{n-1}$$

 $b_n = b_{n-1} + b_{n-2} + 1; \ b_1 = 1; \ b_2 = 2$
 $c_n = 2c_{n-1}; \ c_1 = 1$

- 16. Determine whether or not each of the following is a solution to the recurrence relation $a_n = 8a_{n-1} 16a_{n-2}$
 - (a) $a_n = 0$ (b) $a_n = 2^n$

Notice that if $a_n = 0$ for all n, then $8a_{n-1} - 16a_{n-2} = 8(0) - 16(0) = 0 = a_n$, so this sequence is a solution to the given recurrence relation.

(c)
$$a_n = n4^n$$
 (d)

Notice that if $a_n = n4^n$ for all n, then $8a_{n-1} - 16a_{n-2} = 8((n-1)4^{n-1}) - 16((n-2)4^{n-2}) = 2(4)4^n(n-1) - 4^24^{n-2}(n-2) = 2(4^n)(n-1) - 4^n(n-2) = 4^n [2(n-1) - (n-2)] = 4^n [2n-2-n+2] = 4^n \cdot n = n4^n$, so this sequence is a solution to the given recurrence relation.

Notice that if $a_n = 2^n$ for all n, then $8a_{n-1} - 16a_{n-2} = 8(2^{n-1}) - 16(2^{n-2}) = 4 \cdot 2 \cdot 2^{n-1} - 4 \cdot 4 \cdot 2^{n-2} = 4 \cdot 2^n - 4 \cdot 2^n = 0 \neq a_n$, so this sequence is **not** a solution to the given recurrence relation.

(d)
$$a_n = 2 \cdot 4^n + 3n \cdot 4^n$$

Notice that if $a_n = 2 \cdot 4^n + 3n \cdot 4^n$ for all n, then $8a_{n-1} - 16a_{n-2} = 8(2 \cdot 4^{n-1} + 3(n-1) \cdot 4^{n-1}) - 16((2 \cdot 4^{n-2} + 3(n-2) \cdot 4^{n-2})) = 8 \cdot 4^{n-1} [2 + 3(n-1)] - 16 \cdot 4^{n-2} [2 + 3(n-2)] = 2 \cdot 4^n [2 + 3n - 3] - 4^n [2 + 3n - 6] = 4^n [2(3n-1) - 3n - 4] = 4^n (3n+2) = 2\dot{4}^n + 3n \cdot 4^n$, so this sequence is a solution to the given recurrence relation.

- 17. Find a recurrence relation satisfying each of the following:
 - (a) $a_n = 3n 2$ $a_n = a_{n-1} + 3; a_1 = 1$ (b) $a_n = 3^n$ $a_n = 3a_{n-1} + 3; a_0 = 1$ (c) $a_n = n^2$ $a_n = a_{n-1} + 2n - 1; a_0 = 0$
- 18. Find the solution to each of the following recurrence relations and initial conditions
 - (a) $a_n = 4a_{n-1}, a_0 = 1$

Notice that $a_n = 4a_{n-1}$ and $a_{n-1} = 4a_{n-2}$. Therefore, $a_n = 4(4a_{n-2}) = 4^2a_{n-2}$. Continuing in this fashion, $a_n = 4^2a_{n-2} = 4^2(4a_{n-3}) = 4^3a_{n-3} = \cdots = 4^na_0$ where $a_0 = 1$. Hence this sequence has explicit form: $a_n = 4^n$.

(b) $a_n = a_{n-1} + 4, a_0 = 4$

Notice that $a_n = a_{n-1} + 4$ and $a_{n-1} = a_{n-2} + 4$. Therefore, $a_n = (a_{n-2} + 4) + 4 = a_{n-2} + 2(4)$. Continuing in this fashion, $a_n = a_{n-2} + 2(4) = (a_{n-3} + 4) + 2(4) = a_{n-3} + 3(4) = \dots = a_0 + n(4)$ where $a_0 = 4$. Hence this sequence has explicit form: $a_n = 4n + 4$.

(c) $a_n = a_{n-1} + n, a_0 = 1$

Notice that $a_n = a_{n-1} + n$ and $a_{n-1} = a_{n-2} + (n-1)$. Therefore, $a_n = a_{n-2} + (n-1) + n$. Continuing in this fashion, $a_n = a_{n-3} + (n-2) + (n-1) + n = \dots = a_0 + \sum_{k=1}^n k$ where $a_0 = 1$. Hence $a_n = 1 + \sum_{k=1}^n k = 1 + \frac{n(n+1)}{2} = \frac{n^2 + n + 2}{2}$

19. Compute the value of each of the following summations:

(a)
$$\sum_{k=1}^{5} 2k = 2 + 4 + 6 + 8 + 10 = 30$$
 (b)
$$\sum_{i=0}^{3} 3^{i} = 1 + 3 + 9 + 27 = 40$$
 (c)
$$\sum_{j=3}^{13} 5 = 11(5) = 55$$

(d)
$$\sum_{j=2}^{5} 2^{j} - 2j = (4 - 4) + (8 - 6) + (16 - 8) + (32 - 10) = 0 + 2 + 8 + 22 = 32$$

(e)
$$\sum_{i=1}^{3} \sum_{j=0}^{2} ij^{2} = \sum_{i=1}^{3} (i(0^{2}) + i(1^{2}) + i(2^{2})) = \sum_{i=1}^{3} 5i = 5(1) + 5(2) + 5(3) = 30$$

(f)
$$\sum_{j=0}^{2} \sum_{i=1}^{2} ij^{2} = \sum_{j=0}^{2} (j^{2} + 2j^{2}) = \sum_{j=0}^{2} 3j^{2} = 3(0) + 3(1) + 3(2) = 9$$

20. Prove that $n^5 - n$ is divisible by 5 for any non-negative integer n.

We will proceed by induction. **Base Case:** n = 0 Notice that $0^5 - 0 = 0$. Since $5 \cdot 0 = 0$, 0 is divisible by 5.

Induction Step: Suppose that $k^5 - k$ is divisible by 5, and consider $(k + 1)^5 - (k + 1)$. Expanding this, $(k + 1)^5 - (k + 1) = (k^5 + 5k^4 + 10k^3 + 10k^2 + 5k + 1) - (k + 1) = k^5 + 5k^4 + 10k^3 + 10k^2 + (5k - k)$ $= 5k^4 + 10k^3 + 10k^2 + 5k + (k^5 - k)$. Since 5 divides $k^5 - k$, by the induction hypothesis, 5 divides every term of the previous expression.

This 5 divides $(k+1)^5 - (k+1)$.

Hence $n^5 - n$ is divisible by 5 for any non-negative integer n. \Box .

21. Prove that for $r \in \mathbb{R}$, $r \neq 1$ and for all integers n, $\sum_{j=0}^{n} r^j = \frac{r^{n+1}-1}{r-1}$

We will proceed by induction. Base Case: n = 0. Then $\sum_{j=0}^{n} r^j = r^0 = 1$. While $\frac{r^{n+1}-1}{r-1} = \frac{r-1}{r-1} = 1$ (provided $r \neq 1$).

Induction Step: Suppose that $\sum_{j=0}^{k} r^j = \frac{r^{k+1}-1}{r-1}$ and consider $\sum_{j=0}^{k+1} r^j$.

Then
$$\sum_{j=0}^{k+1} r^j = \sum_{j=0}^k r^j + r^{k+1} = \frac{r^{k+1} - 1}{r - 1} + r^{k+1} = \frac{r^{k+1} - 1}{r - 1} + \frac{r^{k+1}(r - 1)}{r - 1}$$

= $\frac{r^{k+1} - 1 + r^{k+2} - r^{k+1}}{r - 1} = \frac{r^{k+2} - 1}{r - 1}$ \Box .

22. Prove that for all $n \ge 2$, $\sum_{k=1}^{n} \frac{1}{k^2} < 2 - \frac{1}{n}$

We will proceed by induction. **Base Case:** n = 2. Then $\sum_{k=1}^{2} \frac{1}{k^2} = \frac{1}{1} + \frac{1}{4} = \frac{5}{4} < 2 - \frac{1}{2} = \frac{3}{2}$.

Induction Step: Suppose $\sum_{k=1}^{n} \frac{1}{k^2} < 2 - \frac{1}{n}$ and consider $\sum_{k=1}^{n+1} \frac{1}{k^2}$.

$$\sum_{k=1}^{n+1} \frac{1}{k^2} = \sum_{k=1}^n \frac{1}{k^2} + \frac{1}{(n+1)^2} < 2 - \frac{1}{n} + \frac{1}{(n+1)^2} = 2 - \frac{n^2 + 2n + 1}{n(n+1)^2} + \frac{n}{n(n^2 + 2n + 1)}$$
$$= 2 - \frac{n^2 + n + 1}{n(n+1)^2} = 2 - \frac{n^2 + n}{n(n+1)^2} - \frac{1}{n(n+1)^2} = 2 - \frac{1}{n+1} - \frac{1}{n(n+1)^2} < 2 - \frac{1}{n+1}$$
Hence for all $n \ge 2$, $\sum_{k=1}^n \frac{1}{n} < 2 - \frac{1}{n}$

Hence for all $n \ge 2$, $\sum_{k=1}^{\infty} \frac{1}{k^2} < 2 - \frac{1}{n}$ \Box .

23. Prove that $n! < n^n$ whenever n > 1.

Base Case: n = 2. Then 2! = 2 while $2^2 = 2$. Then 2 < 4.

Induction Step: Suppose $k! < k^k$ and consider (k + 1)!

Lemma: If 0 < x < y, then $x^n < y^n$ for all n.

Base Case: When n = 1, x < y. Inductive step: If $x^n < y^n$, then $x \cdot x^n = x^{n+1} < x \cdot y^n$. Similarly, $x \cdot y^n < y \cdot y^n = y^{n+1}$ Hence $x^{n+1} < y^{n+1}$. \Box . Applying the Lemma, Since k < k+1, $k^k < (k+1)^k$. By the induction hypothesis, $(k+1)! = k!(k+1) < k^k(k+1)$. Thus $(k+1)! < (k+1)^k(k+1) = (k+1)^{k+1}$ \Box . 24. Prove that for all n, $\sum_{k=1}^{n} \frac{1}{(2k-1)(2k+1)} = \frac{n}{2n+1}$

Base Case: n = 1. Then $\sum_{k=1}^{1} \frac{1}{(2k-1)(2k+1)} = \frac{1}{(1)(3)} = \frac{1}{3}$, while $\frac{n}{2n+1} = \frac{1}{2+1} = \frac{1}{3}$

Induction Step: Suppose $\sum_{k=1}^{n} \frac{1}{(2k-1)(2k+1)} = \frac{n}{2n+1}$ and consider $\sum_{k=1}^{n+1} \frac{1}{(2k-1)(2k+1)}$.

Using the induction hypothesis, $\sum_{k=1}^{n+1} \frac{1}{(2k-1)(2k+1)} = \frac{n}{2n+1} + \frac{1}{(2n+1)(2n+3)} = \frac{n(2n+3)}{(2n+1)(2n+3)} + \frac{1}{(2n+1)(2n+3)} + \frac{1}{$

 $=\frac{2n^2+3n+1}{(2n+1)(2n+3)}=\frac{(2n+1)(n+1)}{(2n+1)(2n+3)}=\frac{n+1}{2n+3}=\frac{n+1}{2(n+1)+1}\quad \Box.$