
Math 210
Exam 2 - Practice Problems

1. For each of the following, determine whether the statement is True or False.

(a) ∅ ⊆ {a, b, c, d} TRUE

(b) ∅ ∈ {a, b, c, d} FALSE

(c) ∅ ∈ {a, b, ∅} TRUE

(d) ∅ ⊆ {a, b, ∅} TRUE

(e) {a, b} ⊂ {a, b} FALSE

(f) 0 ∈ {0, {1}, {0, 1}} TRUE

(g) 1 ∈ {0, {1}, {0, 1}} FALSE

(h) {0, 1} ∈ {0, {1}, {0, 1}} TRUE

(i) {0, 1} ⊂ {0, {1}, {0, 1}} FALSE

2. Given the set B = {a, b, {a, b}}

(a) Find |B|.

|B| = 3

(b) Find P(B)

P(B) = {∅, {a}, {b}, {{a, b}}, {a, b}, {a, {a, b}}, {b, {a, b}}, {a, b, {a, b}}}

3. Given that A = {1, 2, 3} and B = {a, b, c, d, e, f}

(a) List the elements in A×A.

A×A = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)}

(b) How many elements are in A×B?

|A×B| = |A| · |B| = 3 · 6 = 18.

(c) How many elements are in A× (B ×B)?

First notice that |B ×B| = |B| · |B| = 6 · 6 = 36.

Then |A× (B ×B) | = |A| · |B ×B| = 3 · 36 = 108.

4. Find the set of all elements that make the predicate Q(x) : x2 < x true (where the domain of x is all real numbers).

First notice that if x > 1, then x · x > 1 · x, so x2 > x.

If x < 0, then since x2 > 0 for all real x, x2 > 0 > x.

If x = 0, then 02 = 0. Similarly, if x = 1, then 12 = 1.

If 0 < x < 1, then x · x < 1 · x, or x2 < x.

Hence the set of all elements that make the predicate Q(x) : x2 < x true is A = {x | 0 < x < 1}.

5. Given that A = {0, 2, 4, 6, 8, 10, 12}, B = {0, 2, 3, 5, 7, 11, 12} and C = {1, 2, 3, 4, 6, 7, 8, 9} are all subsets of the universal
set U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}, find each of the following:

(a) A−B = {4, 6, 8, 10}
(b) A = {1, 3, 5, 7, 9, 11}
(c) A ∩B = {0, 2, 12}
(d) A ∪ (B ∩ C)

B∩C = {2, 3, 7}, so A∪(B∩C) =

{0, 2, 3, 4, 6, 7, 8, 10, 12}
(e) A− (B ⊕ C)

B = {1, 4, 6, 8, 9, 10}, so B⊕C =
{2, 3, 7, 10}.
Hence A − (B ⊕ C) =
{0, 4, 6, 8, 12}

(f) (A ∩ C) ∪ (B −A)

A ∩ C = {2, 4, 6, 8}, A =
{1, 3, 5, 7, 9, 11}, and so B − A =
{0, 2, 12}.
Thus (A ∩ C) ∪ (B − A) =
{0, 2, 4, 6, 8, 12}



6. Draw Venn Diagrams representing each of the following sets:

(a) A−B

A

U

B

(b) B −A

U

A B

(c) (A ∪ C) ∩B

U
A

B C

(d) A ∪B ∪ C

A

CB

U

(e) A− (B ∪ C)

U

B

C

A

(f) (A ∩B)− C

A

CB

U

7. Use a membership table to show that (B −A) ∪ (C −A) = (B ∪ C)−A.

A B C B −A C −A (B −A) ∪ (C −A)
1 1 1 0 0 0
1 1 0 0 0 0
1 0 1 0 0 0
1 0 0 0 0 0
0 1 1 1 1 1
0 1 0 1 0 1
0 0 1 0 1 1
0 0 0 0 0 0

A B C B ∪ C (B ∪ C)−A

1 1 1 1 0
1 1 0 1 0
1 0 1 1 0
1 0 0 0 0
0 1 1 1 1
0 1 0 1 1
0 0 1 1 1
0 0 0 0 0

Since the last columns of these membership tables are identical, these two sets are equal.

8. Use a 2-column proof to verify the set identity: A ∪ (A ∩B) = A.

Statement Reason

A ∪ (A ∩B) Given
= {x | (x ∈ A) ∨ [(x ∈ A) ∧ (x ∈ B)]} Definition of union and definition of intersection.
= {x |x ∈ A} Absorption Law for logical statements.
= A Definition of A

The proof given in the table above verifies that these sets are equal, so this identity is always valid.

9. For each of the following, either prove the statement or show that it is false using a counterexample.

(a) (A−B)− C = A− (B − C)

FALSE. Consider the counterexample: A = {1, 2, 3, 4}, B = {2, 3, 5}, and C = {3, 4, 5, 6}.
Then A−B = {1, 4}, so (A−B)− C = {1}, while B − C = {2}, so A− (B − C) = {1, 3, 4}.
Then (A−B)− C 6= A− (B − C)



(b) A⊕ (B ⊕ C) = (A⊕B)⊕ C

We will prove this equality using membership tables:

A B C B ⊕ C A⊕ (B ⊕ C)
1 1 1 0 1
1 1 0 1 0
1 0 1 1 0
1 0 0 0 1
0 1 1 0 0
0 1 0 1 1
0 0 1 1 1
0 0 0 0 0

A B C A⊕B (A⊕B)⊕ C

1 1 1 0 1
1 1 0 0 0
1 0 1 1 0
1 0 0 1 1
0 1 1 1 0
0 1 0 1 1
0 0 1 0 1
0 0 0 0 0

Since the last columns of these membership tables are identical, these two sets are equal.

(c) A ∩ (B − C) = (A ∩B)− (A ∩ C)

A B C B − C (A ∩ (B − C)
1 1 1 0 0
1 1 0 1 1
1 0 1 0 0
1 0 0 0 0
0 1 1 0 0
0 1 0 1 0
0 0 1 0 0
0 0 0 0 0

A B C A ∩B A ∩ C (A ∩B)− (A ∩ C)
1 1 1 1 1 0
1 1 0 1 0 1
1 0 1 0 1 0
1 0 0 0 0 0
0 1 1 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0

Since the last columns of these membership tables are identical, these two sets are equal.

10. Consider the function f(x) = |x|

(a) Suppose that the domain of this function is R and the co-domain is R. Find the range of f . Is f 1-1? Is f onto?
Justify your answers.

Recall that if x ≥ 0, then f(x) = x and if x < 0, then f(x) = −x. From this, we see that the range of f is
{x : x ∈ R, x ≥ 0}.

Notice that f(1) = f(−1) = 1, so f is not one-to-one.

Based on the range we found, we see that f is not onto. For example, there is no x that maps to −1.

(b) Suppose that the domain of this function is N and the co-domain is N. Find the range of f . Is f 1-1? Is f onto?
Justify your answers.

If we change the domain and co-domain to N, then f has range {x : x ∈ N} = N. Thus f is onto.

With the given domain and co-domain, f is also one-to-one, since on this domain, f(x) = x for all x ∈ N.

(c) Suppose S = {−2,−1, 0, 1, 2}. Find f(S) (the image of the set S under f). Find f−1(S) (the preimage of the set
S under f).

f(S) = {0, 1, 2}. However, since −2 and −1 are not legal images, f−1(S) is undefined.



11. For each of the following functions, determine whether f is a one-to-one. Also determine whether f is onto. Justify
your answers.

(a) f : R → R, f(x) = x3 − x

Notice that f(0) = f(1) = 0. Therefore, f is not one-to-
one. To see that f is onto, notice that f ′(x) = 3x2 − 1,

so f ′(x) ≥ 0 whenever |x| ≥
√
3
3 . From this, we can de-

duce that f is increasing both on (∞,−1] and on [1,∞).
Also, note that lim

x→−∞
f(x) = −∞ and lim

x→∞
f(x) = ∞.

Finally, since f(1) = 0 and f(−1) = 0, f attains all pos-
itive values in R on the interval [1,∞), and f attains all
negative values in R on the interval (−∞,−1]. Thus f

is onto.

(b) f : R+ → R
+ f(x) = x2

Notice that since we have restricted the domain to in-
clude only positive values, if f(a) = f(b), then a2 = b2,
so a = b. Hence f is one-to-one.

Also, if we consider k ∈ R
+ and let x =

√
k (which is

defined since k ≥ 0). Then f(x) = (
√
k)2 = k.

(c) f : Z× Z → Z f(m,n) = m2 − n

f is not one-to-one, since f(1, 1) = f(−1, 1) = f(0, 0) =
0.

f is onto. To see this, let k ∈ N. Let m = 0, and
n = −k. Then f(m,n) = 0− (−k) = k.

(d) f : Z× Z → Z f(m,n) = m2 − n2

f is not one-to-one, since f(1, 1) = f(−1, 1) = f(0, 0) =
0.

f is not onto. To see this, let k = 6. Now, the square
numbers are 0, 1, 4, 9, 16, 25, 36, ...

If we subtract consecutive squares, as we proved on a
previous homework exercise, we get the odd numbers
1, 3, 5, 7, 9, 11, · · · .

To obtain an even difference, we must subtract non-
consecutive squares. Notice that 4 − 0 = 4, 9 − 1 = 8,
and 16 − 4 = 12. Since our previous result shows that
the difference between perfect squares increases as their
size increases, we can see that there is no way of writing
6 as a difference of two perfect squares. Hence f is not
onto.

[Notice that we could prove that the difference between
two perfect squares is either odd or is a multiple of 4, but
that goes beyond what was asked for in this problem.]

12. Prove or Disprove: Suppose f : B → C and g : A → B. If f is one-to-one and g is onto, then f ◦ g is one to one.

This statement is false. For example, Let A = B = C = N consider f(n) = n and g(n) = ⌈n
2 ⌉.

f is the identity map, so f is one-to-one. g is onto since g(2n) = n for all n. However, notice that (f ◦ g)(n) = g(n) for
all n. Therefore, f ◦ g is not one-to-one, since (f ◦ g)(1) = (f ◦ g)(2) = 1.

13. Prove or Disprove: Suppose f : B → C and g : A → B. If f is one-to-one and g is onto, then f ◦ g is onto.

This statement is false. For example, Let A = B = C = N consider f(n) = 2n and g(n) = n.

g is the identity map, so g is one-to-one. f is one-to-one since if f(a1) = f(a2), then 2a1 = 2a2, so a1 = a2. However,
notice that (f ◦ g)(n) = 2n for all n. Therefore, f ◦ g is not onto, since there is no input n such that (f ◦ g)(n) = 1.

14. Find the first five terms of each of the following sequences (start with n = 1):

(a) an = 3n− 1

a1 = 2, a2 = 5, a3 = 8, a4 = 11,
a5 = 14

(b) bn = (−1)
n
n2

b1 = −1, b2 = 4, b3 = −9, b4 = 16,
b5 = −25

(c) cn = nn−1

c1 = 10 = 1, c2 = 21 = 2, c3 = 32 =
9, c4 = 43 = 64, c5 = 54 = 625

(d) an = 2an−1, a0 = 5

a1 = 10, a2 = 20, a3 = 40, a4 = 80,
a5 = 160

(e) bn = bn−1 + n2, b0 = 7

b1 = 7 + 1 = 8, b2 = 8 + 4 = 12,
b3 = 12 + 9 = 21, b4 = 21 + 16 = 37,
b5 = 37 + 25 = 62

(f) cn = cn−1 + ncn−2, c0 = 2, c1 = 3

c1 = 3, c2 = 3 + 2(2) = 7, c3 =
7 + 3(3) = 16, c4 = 16 + 4(7) = 44,
c5 = 44 + 5(16) = 124

15. Find three different sequences beginning with the terms a1 = 1, a2 = 2 and a3 = 4.

There are many possible answers to this question. Here are some possibilities:

an = 2n−1

bn = bn−1 + bn−2 + 1; b1 = 1; b2 = 2

cn = 2cn−1; c1 = 1



16. Determine whether or not each of the following is a solution to the recurrence relation an = 8an−1 − 16an−2

(a) an = 0

Notice that if an = 0 for all n, then 8an−1 − 16an−2 =
8(0) − 16(0) = 0 = an, so this sequence is a solution to
the given recurrence relation.

(b) an = 2n

Notice that if an = 2n for all n, then 8an−1 − 16an−2 =
8(2n−1)−16(2n−2) = 4·2·2n−1−4·4·2n−2 = 4·2n−4·2n =
0 6= an, so this sequence is not a solution to the given
recurrence relation.

(c) an = n4n

Notice that if an = n4n for all n, then 8an−1 −
16an−2 = 8((n−1)4n−1)−16((n−2)4n−2) = 2(4)4n(n−
1) − 424n−2(n − 2) = 2(4n)(n − 1) − 4n(n − 2) =
4n [2(n− 1)− (n− 2)] = 4n [2n− 2− n+ 2] = 4n · n =
n4n, so this sequence is a solution to the given recurrence
relation.

(d) an = 2 · 4n + 3n · 4n

Notice that if an = 2 · 4n + 3n · 4n for all n, then
8an−1 − 16an−2 = 8(2 · 4n−1 + 3(n− 1) · 4n−1)− 16((2 ·
4n−2 + 3(n − 2) · 4n−2) = 8 · 4n−1 [2 + 3(n− 1)] −
16 · 4n−2 [2 + 3(n− 2)] = 2 · 4n [2 + 3n− 3] −
·4n [2 + 3n− 6] = 4n [2(3n− 1)− 3n− 4] =
4n (3n+ 2) = 24̇n + 3n · 4n, so this sequence is a so-
lution to the given recurrence relation.

17. Find a recurrence relation satisfying each of the following:

(a) an = 3n− 2

an = an−1 + 3; a1 = 1

(b) an = 3n

an = 3an−1 + 3; a0 = 1

(c) an = n2

an = an−1 + 2n− 1; a0 = 0

18. Find the solution to each of the following recurrence relations and initial conditions

(a) an = 4an−1, a0 = 1

Notice that an = 4an−1 and an−1 = 4an−2. Therefore, an = 4(4an−2) = 42an−2.

Continuing in this fashion, an = 42an−2 = 42(4an−3) = 43an−3 = · · · = 4na0 where a0 = 1.

Hence this sequence has explicit form: an = 4n.

(b) an = an−1 + 4, a0 = 4

Notice that an = an−1 + 4 and an−1 = an−2 + 4. Therefore, an = (an−2 + 4) + 4 = an−2 + 2(4).

Continuing in this fashion, an = an−2 + 2(4) = (an−3 + 4) + 2(4) = an−3 + 3(4) = · · · = a0 + n(4) where a0 = 4.

Hence this sequence has explicit form: an = 4n+ 4.

(c) an = an−1 + n, a0 = 1

Notice that an = an−1 + n and an−1 = an−2 + (n− 1). Therefore, an = an−2 + (n− 1) + n.

Continuing in this fashion, an = an−3 + (n− 2) + (n− 1) + n = · · · = a0 +
∑n

k=1 k where a0 = 1.

Hence an = 1 +
∑n

k=1 k = 1 + n(n+1)
2 = n2+n+2

2

19. Compute the value of each of the following summations:

(a)
5

∑

k=1

2k = 2 + 4 + 6 + 8 + 10 = 30 (b)
3

∑

i=0

3i = 1 + 3 + 9 + 27 = 40 (c)
13
∑

j=3

5 = 11(5) = 55

(d)

5
∑

j=2

2j − 2j = (4− 4) + (8− 6) + (16− 8) + (32− 10) = 0 + 2 + 8 + 22 = 32

(e)
3

∑

i=1

2
∑

j=0

ij2 =
3

∑

i=1

(

i(02) + i(12) + i(22)
)

=
3

∑

i=1

5i = 5(1) + 5(2) + 5(3) = 30

(f)

2
∑

j=0

2
∑

i=1

ij2 =

2
∑

j=0

(

j2 + 2j2
)

=

2
∑

j=0

3j2 = 3(0) + 3(1) + 3(2) = 9



20. Prove that n5 − n is divisible by 5 for any non-negative integer n.

We will proceed by induction. Base Case: n = 0 Notice that 05 − 0 = 0. Since 5 · 0 = 0, 0 is divisible by 5.

Induction Step: Suppose that k5 − k is divisible by 5, and consider (k + 1)5 − (k + 1).

Expanding this, (k + 1)5 − (k + 1) = (k5 + 5k4 + 10k3 + 10k2 + 5k + 1)− (k + 1) = k5 + 5k4 + 10k3 + 10k2 + (5k − k)

= 5k4 + 10k3 + 10k2 + 5k + (k5 − k).

Since 5 divides k5 − k, by the induction hypothesis, 5 divides every term of the previous expression.

This 5 divides (k + 1)5 − (k + 1).

Hence n5 − n is divisible by 5 for any non-negative integer n. 2.

21. Prove that for r ∈ R, r 6= 1 and for all integers n,

n
∑

j=0

rj =
rn+1 − 1

r − 1

We will proceed by induction. Base Case: n = 0. Then

n
∑

j=0

rj = r0 = 1. While
rn+1 − 1

r − 1
=

r − 1

r − 1
= 1 (provided

r 6= 1).

Induction Step: Suppose that
k

∑

j=0

rj =
rk+1 − 1

r − 1
and consider

k+1
∑

j=0

rj .

Then

k+1
∑

j=0

rj =

k
∑

j=0

rj + rk+1 =
rk+1 − 1

r − 1
+ rk+1 =

rk+1 − 1

r − 1
+

rk+1(r − 1)

r − 1

=
rk+1 − 1 + rk+2 − rk+1

r − 1
=

rk+2 − 1

r − 1
2.

22. Prove that for all n ≥ 2,
n
∑

k=1

1

k2
< 2− 1

n

We will proceed by induction. Base Case: n = 2. Then
2

∑

k=1

1

k2
=

1

1
+

1

4
=

5

4
< 2− 1

2
=

3

2
.

Induction Step: Suppose

n
∑

k=1

1

k2
< 2− 1

n
and consider

n+1
∑

k=1

1

k2
.

n+1
∑

k=1

1

k2
=

n
∑

k=1

1

k2
+

1

(n+ 1)2
< 2− 1

n
+

1

(n+ 1)2
= 2− n2 + 2n+ 1

n(n+ 1)2
+

n

n(n2 + 2n+ 1)

= 2− n2 + n+ 1

n(n+ 1)2
= 2− n2 + n

n(n+ 1)2
− 1

n(n+ 1)2
= 2− 1

n+ 1
− 1

n(n+ 1)2
< 2− 1

n+ 1

Hence for all n ≥ 2,
n
∑

k=1

1

k2
< 2− 1

n
2.

23. Prove that n! < nn whenever n > 1.

Base Case: n = 2. Then 2! = 2 while 22 = 2. Then 2 < 4.

Induction Step: Suppose k! < kk and consider (k + 1)!

Lemma: If 0 < x < y, then xn < yn for all n.

Base Case: When n = 1, x < y.

Inductive step: If xn < yn, then x · xn = xn+1 < x · yn. Similarly, x · yn < y · yn = yn+1

Hence xn+1 < yn+1. 2.

Applying the Lemma, Since k < k + 1, kk < (k + 1)k. By the induction hypothesis, (k + 1)! = k!(k + 1) < kk(k + 1).

Thus (k + 1)! < (k + 1)k(k + 1) = (k + 1)k+1
2.



24. Prove that for all n,

n
∑

k=1

1

(2k − 1)(2k + 1)
=

n

2n+ 1

Base Case: n = 1. Then

1
∑

k=1

1

(2k − 1)(2k + 1)
=

1

(1)(3)
=

1

3
, while

n

2n+ 1
=

1

2 + 1
=

1

3

Induction Step: Suppose

n
∑

k=1

1

(2k − 1)(2k + 1)
=

n

2n+ 1
and consider

n+1
∑

k=1

1

(2k − 1)(2k + 1)
.

Using the induction hypothesis,

n+1
∑

k=1

1

(2k − 1)(2k + 1)
=

n

2n+ 1
+

1

(2n+ 1)(2n+ 3)
=

n(2n+ 3)

(2n+ 1)(2n+ 3)
+

1

(2n+ 1)(2n+ 3)

=
2n2 + 3n+ 1

(2n+ 1)(2n+ 3)
=

(2n+ 1)(n+ 1)

(2n+ 1)(2n+ 3)
=

n+ 1

2n+ 3
=

n+ 1

2(n+ 1) + 1
2.


