Identity	Name
$\overline{\overline{x}} = x$	Law of the double complement
x + x = x	Idempotent Laws
$x \cdot x = x$	
x + 0 = x	Identity Laws
$x \cdot 1 = x$	
x + 1 = 1	Domination Laws
$x \cdot 0 = 0$	
x + y = y + x	Commutative Laws
xy = yx	
x + (y + z) = (x + y) + z	Associative Laws
x(yz) = (xy)z	
x + yz = (x + y)(x + z)	Distributive Laws
x(y+z) = xy + xz	
$\overline{(xy)} = \overline{x} + \overline{y}$	De Morgan's Laws
$\overline{(x+y)} = \overline{x}\overline{y}$	
x + xy = x	Absorption Laws
x(x+y) = x	
$x + \overline{x} = 1$	Unit Property
$x\overline{x} = 0$	Zero Property

Some Important Boolean Identities

The Abstract Definition of a Boolean Algebra

A **Boolean Algebra** is a set B with two binary operations \lor and \land , elements 0 and 1, and a unary operation $\overline{}$ such that the following properties hold for all x, y and $z \in B$:

Property	Name
$x \lor 0 = x$	Identity Laws
$x \wedge 1 = x$	
$x \vee \overline{x} = 1$	Complement Laws
$x \wedge \overline{x} = 0$	
$(x \lor y) \lor z = x \lor (y \lor z)$	Associative Laws
$(x \land y) \land z = x \land (y \land z)$	
$x \lor y = y \lor x$	Commutative Laws
$x \wedge y = y \wedge x$	
$x \lor (y \land z) = (x \lor y) \land (x \lor z)$	Distributive Laws
$x \land (y \lor z) = (x \land y) \lor (x \land z)$	