Instructions: This is a group activity. You must work together with your assigned group to answer these questions. Write a proof by contradiction for each of the following propositions. The following definitions will be helpful to you as you work to write these proofs:

Definitions:

- A real number r is rational if r = ^a/_b for some a, b ∈ Z with b ≠ 0.
 A real number r is irrational if r ≠ ^a/_b for every a, b ∈ Z.
- - 1. **Proposition 1:** Let $a \in \mathbb{Z}$. If a^2 is even, then a is even.

2. **Proposition 2:** $\sqrt{3}$ is irrational.

3. Proposition 3: If s is rational and st is irrational, then t is irrational.

4. **Proposition 4:** If A and B are sets, then $A \cap (B - A) = \emptyset$.

5. **Proposition 5:** If a and b are positive real numbers, then $a + b \ge 2\sqrt{ab}$.